Pickering emulsions stabilized by metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites

Fanyu Zhang,1,2 Lifei Liu,1,2 Xiuniang Tan,1,2 Xinxin Sang,3 Jianling Zhang,1,2* Chengcheng Liu,1,2 Bingxing Zhang,1,2 Buxing Han1,2 and Guanying Yang1

1 Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

2 University of Chinese Academy of Sciences, Beijing 100049, P.R.China.

3 School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R.China.

*Correspondence to: zhangjl@iccas.ac.cn
Fig. S1 Photographs of the emulsions stabilized by Zr-BDC-NO$_2$ and GO with concentration ratio of GO to Zr-BDC-NO$_2$ 5:1 (a), 4:1 (b), 3:1 (c) and 2:1 (d), respectively.

Fig. S2 XRD pattern of GO.
Fig. S3 XRD pattern of Zr-BDC-NO$_2$.

Fig. S4 SEM of pristine GO, scale bar: 50 μm.
Fig. S5 SEM (a, b) and TEM images (c, d) of Zr-BDC-NO$_2$. Scale bar : 1 \(\mu \)m in a, 200 nm in b and d, and 500 nm in c.

Fig. S6 N_2 adsorption-desorption isotherms of Zr-BDC-NO$_2$/GO composite obtained from the emulsion stabilized by GO and Zr-BDC-NO$_2$ that the concentration ratio of GO to Zr-BDC-NO$_2$ is 2:1.
Fig. S7 FT-IR spectrum of GO.

Fig. S8 FT-IR spectrum of Zr-BDC-NO$_2$.
Fig. S9 CLSM images of the emulsions stabilized by GO (a) and Zr-BDC-NO$_2$ (b) individually. The concentration of GO and Zr-BDC-NO$_2$ in respective emulsion is 1.5 mg mL$^{-1}$.