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Supplementary materials

Experimental setup for sheet adhesion. As shown in Figure S1, two slender sheets 

made of polyester are fixed on a digital calliper by the double faced adhesive tape, 

and the calliper is horizontally fixed on an iron support. The two sheets have the same 

sizes and physical parameters, and they are initially parallel, i.e. vertical to the calliper 

before adhered by liquid. The distance between the two fixed ends can be modulated 

by moving the sliding vernier horizontally. Each sheet can be divided into two 

segments, i.e. the adhesion or wetted part and the detachment or dry part. 
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Figure S1 Experimental setup for sheet adhesion. 

Energy functional variation with movable boundary conditions. Let us consider a 

generalized elastic system represented as a continuous and smooth curve, where part 

of the curve is adhered at interfaces. As schematized by the anti-clockwise arc length 

s in Fig. S2, the total length of the curve is 
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denoted by L. Assume that the elastic deformation only occurs on the segment from 

s=0 to s=a. The total potential energy of the system encompasses two originations, 

namely, elastic strain energy and interfacial energy. 

Elastic body

Adhered segment

s a

s L

0s

Figure S2 Schematics for a system incorporating two parts with elastic energy 

and interfacial energy, respectively.

The value of a is an unknown and should be determined in calculation, so the 

total potential energy of the system is viewed as a function of the parameter a:

,     a U a a    (S1)

where  is the interfacial energy, U(a) is the strain energy stored in the system  a

which is often expressed as U= , and y is a function      
0
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with two variables, i.e. y=y(s,a).  

The parameter W is designated as the surface energy density or the work of 

adhesion at the interface. The work of adhesion between two surfaces is normally 

expressed as

,1 2 12W      (S2)
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where  and  are the surface energy densities of the two different phases, and  1 2 12

is the interfacial energy density. For the two phases being of the same material, the 

work of adhesion degenerates to the cohesive work

.12W  (S3)

For a droplet on a substrate, the work of adhesion becomes

. SV SL Y1 cosW          (S4)

where ,  and  are the interfacial tensions of the solid/vapor, solid/liquid and SV SL 

liquid/vapor interfaces, respectively, with  being the Young’s contact angle of the Y

liquid. In the above derivation, the Young’s equation  is utilized. SV SL Ycos    

The functional of the total potential energy about the system is normally written 

as: 
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In fact, the energy functional of Eq. (S5) is special in that it deals with two variables, 

i.e. the function y and the length a. This fact yields an intractable problem, because 

the undetermined variable a causes the boundary movement of the system, which 

should create an additional term during the variation process. By using the principle 

of least potential energy and considering the movable boundary, one obtains the 

following variational result 

,  1 2, 0y s a          (S6)
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 The fixed boundary conditions are prescribed as

y(0)=y0, ; y(a)=ya, .  00y y    ay a y  (S9)

According to the arbitrariness of the variation, one can get the governing differential 

equation, i.e. the Euler-Poisson equation: 
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and the arbitrariness of variation about the point a leads to the transversality condition

.
d
d
y

y y
s a

F
W y F y F y F

s


 



 
      

 
(S11)

Actually, the transversality condition stands for the equilibrium state originating from 

the competition between surface energy and elastic energy at the critical point. 
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