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Figure S1: Interaction energy Ẽ2 [Eq. (3)] for two adsorbed particles at a center of mass distance D =
√

(x1 − x2)2 + (y1 − y2)2,
with ϕi, ψi, zi (see Fig. 1), for i = 1, 2, given by their equilibrium value found in Sec. III A, and with azimuthal orientation αi
such that the particles are dipole-dipole interacting (pink symbols) and tripole-tripole interacting (green symbols). The energy
is plotted in units of Σ γ, with Σ the total surface area of one particle and γ the fluid-fluid surface tension. A sketch of the
dipole-dipole and tripole-tripole bonds is shown in Fig. 4(a) − (c). The particle shape considered is (a) a sharp-edge cube, (b)
a smooth-edge cube, (c) a slightly truncated-edge cube, and (d) a highly-truncated edge cube. For the highly truncated-edge
cube, the hexapolar deformation is not 3-fold symmetric like for the other three particle shapes, as one depression and one rise
in the interface height profile are slightly more spread and less intense than the remaining two rises and two depressions (that
is two of the six poles of the hexapole have a different magnitude than the other four, see the contour plots in Fig. 3). In (d),
we show with pink squares the dipole-dipole bond between two dipoles both with two poles of the same magnitude, and with
pink disks the dipole-dipole bond between two dipoles both with two poles of different magnitude. Analogously, we show with
green squares the tripole-tripole bond between two tripoles both with the less intense pole of the hexapole as the central pole
of the tripole, and with green disks the tripole-tripole bond between two tripoles both with the less intense pole of the hexapole
as a lateral pole of the tripole. As shown, the behavior of Ẽ2(D) for the highly truncated-edge cube is similar in all these cases,
proving that the non-exactly-3-fold symmetry of its hexapolar capillary deformation does not affect significantly the results.

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2017



2

Figure S2: (Capillary) interaction energy per particle Ẽ∞ [Eq. (3)], as computed through our numerical method, for 2D
periodic lattices of particles adsorbed at a fluid-fluid interface, with each particle generating a hexapolar capillary deformation
(see Fig. 3). The energy is plotted in units of Σ γ, with Σ the total surface area of one particle and γ the fluid-fluid surface
tension. Green refers to a honeycomb lattice [phase h, see Fig. 4(d),(e)], blue to a square lattice [phase s, see Fig. 4(f)], and
pink to a hexagonal lattice [phase x, see Fig. 4(g)]. The particle shape is (a) a sharp-edge cube, (b) a smooth-edge cube, (c) a
slightly truncated-edge cube, and (d) a highly-truncated edge cube (see exact definitions of these particle shapes in Appendix
A). In the graphs, the squares are the results from our numerical simulations, obtained for various particle densities, i.e. using
different sizes of the lattice unit cell. The particle density η is normalized such that η = 1 for the close-packed hexagonal
lattice. The full lines represent a fit of our numerical data, for the phases h, s, x, with Aα · (η)Bα , where Aα and Bα are the fit
parameters (with α = h, s, x, respectively) and their obtained values is reported in Tab. S1. The vertical dotted lines indicate
the close-packed density, i.e. when the particles are at their contact distance, for the honeycomb lattice (phase h, in green), for
the square lattice (phase s, in blue), and for the hexagonal lattice (phase x, in pink).

Ah/(Σγ) Bh As/(Σγ) Bs Ax/(Σγ) Bx
(a) -0.1100 3.0364 -0.0502 3.0242 -0.0344 2.8081
(b) -0.0584 2.6087 -0.0371 2.7209 -0.0237 2.1091
(c) -0.0274 2.8213 -0.0132 3.0052 -0.0076 2.4411
(d) -0.0093 2.8307 -0.0059 3.4183 -0.0042 3.0774

Table S1: With respect to the results in Fig. S2, we show here the values of the fit parameters Aα and Bα (α = h, s, x),

obtained by fitting Ẽ∞(η) with Aα (η)Bα , for the particle lattice phases h, s, x, and for (a) sharp-edge cubes, (b) smooth-edge
cubes, (c) slightly truncated-edge cubes, and (d) highly-truncated edge cubes. The subscripts h, s, and x indicates the particle

phase in which Ẽ∞(η) was computed.
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Figure S3: For sharp-edge cubes, plots of f(η, T ) [Eq. (6)] for the phase f (light-blue), h (green), s (blue), and x (pink)
with respect to the normalized density η (with η = 1 for the close-packed phase x), for some values of Σγ/kBT (with γ the
fluid-fluid surface tension, Σ the total surface area of the particle, kB the Boltzmann constant and T the temperature). The
dotted vertical lines represents the close-packing values of η for the phases h (green), s (blue), x (pink). The common tangent
constructions [70] (black dotted lines) indicate where phase coexistence occur.

Figure S4: For smooth-edge cubes, plots of f(η, T ) [Eq. (6)] for the phase f (light-blue), h (green), s (blue), and x (pink)
with respect to the normalized density η (with η = 1 for the close-packed phase x), for some values of Σγ/kBT (with γ the
fluid-fluid surface tension, Σ the total surface area of the particle, kB the Boltzmann constant and T the temperature). The
dotted vertical lines represents the close-packing values of η for the phases h (green), s (blue), x (pink). The common tangent
constructions [70] (black dotted lines) indicate where phase coexistence occur.
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Figure S5: For slightly truncated-edge cubes, plots of f(η, T ) [Eq. (6)] for the phase f (light-blue), h (green), s (blue), and x
(pink) with respect to the normalized density η (with η = 1 for the close-packed phase x), for some values of Σγ/kBT (with
γ the fluid-fluid surface tension, Σ the total surface area of the particle, kB the Boltzmann constant and T the temperature).
The dotted vertical lines represents the close-packing values of η for the phases h (green), s (blue), x (pink). The common
tangent constructions [70] (black dotted lines) indicate where phase coexistence occur.

Figure S6: For highly truncated-edge cubes, plots of f(η, T ) [Eq. (6)] for the phase f (light-blue), h (green), s (blue), and x
(pink) with respect to the normalized density η (with η = 1 for the close-packed phase x), for some values of Σγ/kBT (with
γ the fluid-fluid surface tension, Σ the total surface area of the particle, kB the Boltzmann constant and T the temperature).
The dotted vertical lines represents the close-packing values of η for the phases h (green), s (blue), x (pink). The common
tangent constructions [70] (black dotted lines) indicate where phase coexistence occur.
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Figure S7: (Capillary) interaction energy per particle Ẽ∞ [Eq. (3)] with respect to the normalized particle density η (where

η = 1 for the close-packed phase x) for smooth-edge cubes in phase s, as obtained by our numerical method. Here Ẽ∞ is
multiplied by the particle density η and plotted in units of γ/δx, with δx the particle density of the close-packed phase x (see
Tab. II) and γ the fluid-fluid surface tension. The blue vertical dotted line indicates the close-packed value of η for the phase
s. The blue symbols are the results obtained using the unit cell of the phase s defined in Appendix C, Sec. B. The red and
orange symbols indicate the results obtained using a rectangular unit cell for the phase s. Precisely, the orange points are
simulations for cubes in phase s having contact distance in the tripole-tripole bond direction of the lattice, while the distance
in the dipole-dipole bond direction of the lattice is fixed by the particle density, and the red points are simulations for cubes in
the phase s having contact distance in the dipole-dipole bond direction of the lattice, while the distance in the tripole-tripole
bond direction of the lattice is fixed by the particle density. From the common tangent construction [70], see black dotted line,
it follows that at equilibrium the close-packed phase s coexists with an empty phase (i.e. a phase with η = 0), for any density

η of particles at the fluid-fluid interface. Since near the close-packed particle density the interaction energy Ẽ∞ is the same
for the different unit cells (as expected, since they all converge to the same unit cell at the close-packed density), it does not
matter for our results if we use a square or rectangular unit cell for the phase s. In principle, the rectangular unit cells (red and
orange symbols) are energetically more favorable than a square cell for lower particle densities, however such density regimes
are excluded by the common tangent constructions, so it is irrelevant which unit cell we use. For the other particle shapes
considered in the paper we expect qualitatively similar results.
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Figure S8: Temperature-density phase diagram for adsorbed smooth-edge cubes at a fluid-fluid interface. The left vertical axis
is γΣ/(kBT ), with γ the fluid-fluid surface tension, Σ the total surface area of a particle, kB the Boltzmann constant, and T
the temperature (note that the low temperature or big particle limit is in the verse toward down of the vertical axis). The right
vertical axis represents the corresponding value of the particle size L (see exact definition in Appendix A) at room temperature
and using a typical surface tension γ = 0.01N/m. The horizontal axis is the particle density η, normalized such that η = 1
for the close-packed x phase. The colored areas indicate where a pure phase exists on the whole fluid-fluid interface: light-blue
for phase f (disordered phase), green for phase h (honeycomb lattice), blue for phase s (square lattice), and pink for phase x
(hexagonal lattice). The gray areas indicate where coexistence between two phases occurs, and the red symbols mark the triple
points where three phases coexist. The Young contact angle considered here is π/2, so the cubes are always adsorbed at the
interface in the 111 configuration (i.e. with a vertex toward up, see Sec. III A). The results presented in this phase diagram
are obtained by plotting f(η, T ) [Eq. (6)] for the various particle phases f , h, s, and x, with respect to η and at different values
of Σ γ/(kBT ), and then by performing common tangent constructions [70]. Here we use the crystal hard disk free energy Fxhd
[Eq. (19)] in the free energies of the phases h and x [Eqs. (15) and (16), respectively] to compute FS in Eq. (6), while in
the results of Fig. 6 we used the fluid hard disk free energy Ffhd [Eq. (18)]. However, the phase diagram obtained here is
almost identical to the one shown in Fig. 6 for the smooth-edge cubes. This proves that our approximations in the estimation
of the particle entropy by analytical hard-disk expressions are, as we expected, not very relevant. The reason is that we are
consider the interplay between capillary and hard-particle interactions in the regime where capillarity is the leading force, i.e.
Σ γ � kBT , hence a rough estimation of the hard-particle interactions is enough to accurately predict the self-assembly of the
system. On the bottom, we show f(η, T ) [Eq. (6)] for the phase f (light-blue), h (green), s (blue), and x (pink) for some
values of Σγ/kBT , obtained using Fxhd [Eq. (19)] instead of Ffhd [Eq. (18)] in Eqs. (15) and (16). The dotted vertical lines
represents the close-packing values of η for the phases h (green), s (blue), x (pink). The common tangent constructions [70]
(black dotted lines) indicate where phase coexistence occur.
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(a) D = 1.85L D = 1.925L D = 2.00L D = 2.075L

(b) D = 1.925L D = 2.00L D = 2.10L D = 2.20L

(c) D = 1.725L D = 1.80L D = 1.875L D = 1.95L

Figure S9: Energy EN (ω, η), obtained through our numerical method and in units of Σ γ (with γ the fluid-fluid surface tension
and Σ the particle surface area), for sharp-edge cubic particles at a fluid-fluid interface and in the lattice phase (a) x, (b) h, and
(c) s, where ω is the out-of-equilibrium azimuthal rotation we impose on one particle (for the exact definition of the particle
configuration used here for each phase see Fig. 12). The blue symbols are E∗ ≡ [EN (ω, η) − EN (ω = 0, η)]/(Σ γ) obtained for
various particle-particle center-of-mass distances D, corresponding to different particle densities η (see Appendix C, Sec. B).

The red dotted lines represent a fit of EN (ω, η) − EN (ω = 0, η) with U(ω) ≡ C(η) ω
2

2
. The values of C(η) obtained from the

fit for the various phases are shown in Fig. 12.
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(a) D = 1.55L D = 1.65L D = 1.75L D = 1.85L

(b) D = 1.65L D = 1.75L D = 1.85L D = 1.95L

(c) D = 1.575L D = 1.65L D = 1.725L D = 1.80L

Figure S10: Energy EN (ω, η), obtained through our numerical method and in units of Σ γ (with γ the fluid-fluid surface tension
and Σ the particle surface area), for smooth-edge cubic particles at a fluid-fluid interface and in the lattice phase (a) x, (b)
h, and (c) s, where ω is the out-of-equilibrium azimuthal rotation we impose on one particle (for the exact definition of the
particle configuration used here for each phase see Fig. 12). The blue symbols are E∗ ≡ [EN (ω, η) − EN (ω = 0, η)]/(Σ γ)
obtained for various particle-particle center-of-mass distances D, corresponding to different particle densities η (see Appendix

C, Sec. B). The red dotted lines represent a fit of EN (ω, η)−EN (ω = 0, η) with U(ω) ≡ C(η) ω
2

2
. The values of C(η) obtained

from the fit for the various phases are shown in Fig. 12.
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(a) D = 1.55L D = 1.65L D = 1.75L D = 1.85L

(b) D = 1.55L D = 1.65L D = 1.75L D = 1.85L

(c) D = 1.55L D = 1.65L D = 1.75L D = 1.85L

Figure S11: Energy EN (ω, η), obtained through our numerical method and in units of Σ γ (with γ the fluid-fluid surface tension
and Σ the particle surface area), for slightly truncated-edge cubic particles at a fluid-fluid interface and in the lattice phase (a)
x, (b) h, and (c) s, where ω is the out-of-equilibrium azimuthal rotation we impose on one particle (for the exact definition of
the particle configuration used here for each phase see Fig. 12). The blue symbols are E∗ ≡ [EN (ω, η) − EN (ω = 0, η)]/(Σ γ)
obtained for various particle-particle center-of-mass distances D, corresponding to different particle densities η (see Appendix

C, Sec. B). The red dotted lines represent a fit of EN (ω, η)−EN (ω = 0, η) with U(ω) ≡ C(η) ω
2

2
. The values of C(η) obtained

from the fit for the various phases are shown in Fig. 12.
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(a) D = 1.35L D = 1.425L D = 1.50L D = 1.575L

(b) D = 1.30L D = 1.40L D = 1.50L D = 1.60L

(c) D = 1.30L D = 1.40L D = 1.50L D = 1.60L

Figure S12: Energy EN (ω, η), obtained through our numerical method and in units of Σ γ (with γ the fluid-fluid surface tension
and Σ the particle surface area), for highly truncated-edge cubic particles at a fluid-fluid interface and in the lattice phase (a)
x, (b) h, and (c) s, where ω is the out-of-equilibrium azimuthal rotation we impose on one particle (for the exact definition of
the particle configuration used here for each phase see Fig. 12). The blue symbols are E∗ ≡ [EN (ω, η) − EN (ω = 0, η)]/(Σ γ)
obtained for various particle-particle center-of-mass distances D, corresponding to different particle densities η (see Appendix

C, Sec. B). The red dotted lines represent a fit of EN (ω, η)−EN (ω = 0, η) with U(ω) ≡ C(η) ω
2

2
. The values of C(η) obtained

from the fit for the various phases are shown in Fig. 12.


