Supporting Information

Design and Synthesis of Porous ZnTiO₃/TiO₂ Nanocages with Heterojunctions for Enhanced Photocatalytic H₂ Production

Hao Tian,^a Songcan Wang,^b Chi Zhang,^a Jean-Pierre Veder,^c Jian Pan,^a Mietek Jaroniec,^d Lianzhou Wang,^b and Jian Liu^a*

^a Department of Chemical Engineering, Curtin University, Perth, WA 6102, Australia.

^b Nanomaterials Centre, School of Chemical Engineering and AIBN, The University of Queensland, Brisbane, Queensland 4072, Australia

^c John de Laeter Centre, Curtin University, Perth, WA 6102, Australia

^d Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA

Corresponding Author

*Email: jian.liu@curtin.edu.au

Figure S1. XRD patterns of ZIF-8.

Figure S2. TEM images of ZIF-8@TiO₂ after hydrothermal treatment for 12 hour.

Figure S3. TEM images of PZ-1.

Figure S4. (a) (b)TEM, (c) HAADF and (d) STEM images and EDS mapping of PC-1.

Relative Pressure (P/P₀) Pore diameter (nm) Figure S5. (a) STEM image, (b) XRD pattern, (c) N₂ adsorption–desorption isotherm and (d) pore size distribution of PHS-1

Figure S6. TEM image of PZ-2.

Figure S7. (a) (b)TEM, (c) HAADF and (d) STEM images and EDS mapping of PC-2.

Figure S8. (a) STEM image, (b) XRD patterns, (c) N_2 adsorption–desorption isotherm and (d) pore size distribution of PHS-2

Figure S9. XPS survey spectra of PHS-1(a) and PHS-2 (b); their corresponding high-resolution Pt 4f (c), Zn 2p (d) and Ti 2p (e) peaks, respectively.

Figure S10. (a) UV-visible diffuse absorbance spectra and (b) plots of $[F(R)hv]^{0.5}$ vs. the energy of absorbed light of ZTCHS-500, PHS-1 and PHS-2.

Sample	BET surface	Pore volume	Pore size	Layer	Metal
	area (m²/g) ^a	$(cm^{3}/g)^{b}$	(nm) ^a	thickness(nm) ^c	nanoparticle size
					(nm) ^c
ZTCHS-500	132	0.22	3.2	65	-
PHS-1	176	0.27	3.5	25	3
PHS-2	130	0.21	3.5	45	

Table S1. Physical properties of ZTCHS-500, PHS-1 and PHS-2.

^a Specific surface area was calculated by BET method and pore size was estimated on the basis of pore size distribution. ^b Specific pore volume was obtained from the single point adsorption at $P/P_0 \sim 0.99$. ^c Mean layer thickness and metal nanoparticle size were estimated by TEM analysis.

Table S2. Elemental composition of ZTCHS-500, PHS-1 and PHS-2.

Sample	Zn%	Ti%	Pt%	O%
PHS-1	26.82	46.13	0.96	26.09
PHS-2	42.90	37.80	0.82	18.48