Supporting Information

Ultrathin VO₂ Nanosheets Self-Assembled into 3D

Micro/Nano-Structured Hierarchical Porous Sponge-Like

Micro-Bundles for Long-Life and High-Rate Li-Ion Batteries

Pengcheng Liu,^{a,d}* Yuan Xu,^{a,d} Kongjun Zhu,^a* Kan Bian,^a Jing Wang,^a Xu Sun,^a

Guo`an Tai,^a Yanfeng Gao,^b Hongjie Luo,^b Li Lu,^c Jinsong Liu^d

Figure S1. Crystal structure model of VO₂ (B) viewed along the [010] (a), [001] (b), and [100] (c) directions; (d) VO₆ octahedron which is the building blocks of VO₂ (B) crystal structure.

 VO_2 (B) belongs to monoclinic C2/m space group. Its crystal structure is constructed by stacking of V_4O_{10} layers, leading to form abundant tunnels. Moreover, Figure S1a shows that the interlayer space of (001) is 0.607 nm.

Figure S2. Characterizations of VO₂ (B) synthesized by conventional hydrothermal. (a) XRD pattern; (b) SEM image.

It can be seen that the XRD pattern of VO₂ (B) nanoribbons (Figure 1BI) shows a stronger peak intensity and smaller full width at half maximum (FWHM) than that of VO₂ (B) synthesized by conventional hydrothermal (Figure S2a). This result means that VO₂ (B) nanoribbons synthesized by HTMM possess a better crystallinity. Furthermore, compared with VO₂ (B) nanoribbons, the morphology of VO₂ (B) synthesized by conventional hydrothermal is very irregular and small nanoparticles (Figure S2b). This SEM result also means that VO₂ (B) nanoribbons synthesized by HTMM possess a better crystallinity, which agrees well with the result of XRD. These results reveal well that HTMM can greatly improve the crystallinity of products.

Figure S3. Morphology observation of VO_2 (B)@C-SLMBs. (a) TEM image; (b) HRTEM image.

Figure S4. Morphology evolution of VO₂ (B)@C-SLMBs prepared by HTMM at 240 $\,^{\circ}$ C for different time when the molar ratio of glucose: V₂O₅ is 1. (a) 10 min; (b) 30 min; (c) 1 h; (d) 6 h.

It can be seen clearly that these nanosheets become larger and larger, and the layer number of micro-bundles become more and more with time increasing, which reveals that the growth of VO_2 (B)@C-SLMBs is the self-assembly process based on the oriented attachment mechanism.^{1, 2}

Figure S5. XPS spectrums of VO_2 (B)@C-SLMBs. (a) Survey XPS spectrum; (b) XPS spectrum of core level V 2p.

Valence states and bounding types of elements in VO₂ (B)@C-SLMBs are further identified by XPS. The typical survey XPS spectrum for VO₂ (B) is presented in Figure S5a. For the V 2p spectrum (Figure S5b), the peaks of V 2p3/2 and V 2p1/2 are 516.4 and 523.9 eV, corresponding to V^{4+} (516.0 and 524.1 eV).³

Figure S6. TG/DSC curves of VO_2 (B)@C-SLMBs, which were conducted under air.

Figure S7. Nitrogen adsorption-desorption isotherm of low-dimensional VO_2 (B) nanoribbons.

Figure S8. CV curves with the first five cycles of (a) VO₂ (B)@C-SLMBs and (b) VO₂ (B) nanoribbons at a scanning rate of 0.5 mV/s in the voltage range from $3.5 \sim 1.5$ V (*vs.* Li/Li⁺)

Figure S8a shows the CV curves of VO₂ (B)@C-SLMBs. A obvious pair of redox peaks occur, in which the cathodic peak locates at ~2.69 V, and the anode peak locates at ~2.41 V. Importantly, compared with that of VO₂ (B) nanoribbons (Figure S8b), the CV curves of VO₂ (B)@C-SLMBs are better overlapped, which also indicates that VO₂ (B)@C-SLMBs possess the higher reversibility and better capacity retention.⁴ Furthermore, it can also be observed that the CV curves area of VO₂ (B)@C-SLMBs is larger than that of VO₂ (B) nanoribbons, which also suggests that 3D VO₂ (B)@C-SLMBs exhibit higher capacity.

Figure S9. Electrochemical measurements of 3D hierarchical porous VO_2 (B)@C-SLMBs and low-dimensional VO_2 (B) nanoribbons. (a) Discharge curves of SLMBs and nanoribbons at the current density of 100 mA/g; (b) the second charge-discharge curve of SLMBs and nanoribbons at 100 mA/g; (c) long cycling performance of nanoribbons at a large current density of 1000 mA/g.

Figure S9a shows the discharge patterns of 3D hierarchical porous VO₂ (B)@C-SLMBs and low-dimensional VO₂ (B) nanoribbons. It can be seen that discharge curves of VO₂ (B)@C-SLMBs are well overlapped. However, the discharge capacity of VO₂ (B) nanoribbons is becoming lower and lower without good overlapped discharge curves. This reveals that VO₂ (B)@C-SLMBs have the higher reversibility and better capacity retention. The overpotential is measured from the difference between charge and discharge potential at the half reversible capacity, noted as $\Delta V(Q/2)$.^{5, 6} The overpotential of VO₂ (B)@C-SLMBs is only 135 mV, which is much lower than 357 mV of VO₂ (B) nanoribbons (Figure S9b), showing higher electrical and ionic conductivity of VO₂ (B)@C-SLMBs. Figure S9c shows the long-life cycling of VO₂ (B) nanoribbons at 1000 mA/g. Its second capacity is 115 mAh/g. And, the capacity decreases quickly during the following cycles. After 1000 cycles, the capacity of 94 mAh/g can only be kept.

Figure S10. Comparison of electrochemical impedance spectroscopy pattern of VO_2 (B)@C-SLMBs and VO_2 (B) nanoribbons after long-tern cycling.

	Capacity retention at a	Capacity retention at a	Rate canability ^a
Cathode materials	small current (cycle	large current (cycle	(recovery ratio ^b)
	number, final capacity)	number, final capacity)	(recovery ratio)
3D hierarchical porous VO ₂ (B)@-SLBMs (our work)	105% at 100 mA/g (160, 206 mAh/g)	104% at 1000 mA/g (1000, 142 mAh/g)	100 mAh/g at 3000 mA/g (104%)
$VO_2(B)$ nanorods ⁷	49% at 100 mA/g (17, 75 mAh/g)	NA	NA
VO ₂ (B)@C nanobelts ⁸	80% at 100 mA/g (50, 128 mAh/g)	NA	100 mAh/g at 2000 mA/g (NA)
VO ₂ (B)/C nanobelts ⁹	70%.6 at 50 mA/g (100, 152 mAh/g)	NA	138 mAh/g at 1000 mA/g (75.7%)
Nanoscoll buffered	050/ 100 1/		00 41/ 2000
Hybrid nanostructural VO ₂ (B) ⁶	(100, 134 mAh/g)	82% at 1000 mA/g (1000, 96 mAh/g)	98 mAn/g at 2000 mA/g (98.7%)
3D GO-VO ₂ (B)	60% at 50 mA/g	NA	102 mAh/g at 5000
nanosheet flowers ¹⁰	(50, 252 mAh/g)		mA/g (NA)
micro/nano-structured	74% at 150 mA/g	NA	158 mAh/g at 1500
VO ₂ (B) mesocrystals ¹¹	(50, 190 mAh/g)		mA/g (74%)
VO ₂ (B)-rGO	74% at 20 mA/g	NA	NA
composites ¹²	(100, 85 mAh/g)		
VO ₂ (B) hollow	90% at 100 mA/g	73% at 1000 mA/g	129 mAh/g at 2000
microspheres ⁵	(100, 181 mAh/g)	(1000, 104 mAh/g)	mA/g (93%)
VO_2 (B) nanobelts ²	83% at 100 mA/g	NA	90 mAh/g at 2000

Table S1 Comparison of electrochemical performances between the present 3Dhierarchical porous VO_2 (B)@C-SLMBs and other cathode materials for LIBs

	(100, 121 mAh/g)		mA/g (98%)
Carbon fiber cloth@	95% at 100 mA/g	90% at 1000 mA/g	91 mAh/g at 2000
$\mathrm{VO}_{2}\left(\mathrm{B} ight)^{4}$	(100, 138 mAh/g)	(200, 117 mAh/g)	mA/g (98)
Cucumber-like	93% at 50 mA/g	70% at 100 mA/g	48 mAh/g at 500
V ₂ O ₅ /PEDOT&MnO ₂ ¹³	(40, 166 mAh/g)	(200, 110 mAh/g)	mA/g (90%)
Single-crystal LiMn ₂ O ₄	89% at 15 mA/g	70% at 750 mA/g	80 mAh/g at 1500
nanotubes ¹⁴	(8, 105 mAh/g)	(1500, 70 mAh/g)	mA/g (NA)
Heterostructure	85% at 150 mA/g	NA	88 mAh/g at 1300
$LiMn_2O_4$ ¹⁵	(100, 102 mAh/g)		mA/g (100%)
Binder-free LiCoO ₂ /C	95% at 14 mA/g	NA	137.4 mAh/g at 280
nanotubes ¹⁶	(50, 144 mAh/g)		mA/g (NA)
Electrospinning	95% at 170 mA/g	NA	93 mAh/g at 1700
LiFePO ₄ nanowires ¹⁷	(100, 161 mAh/g)		mA/g (100%)

^a Rate capability in this section refers to the discharge specific capacity delivered at the largest current density.

^b Recovery rate in this section refers to the ratio of the discharge capacity recovered when the current returns back to a small one to the corresponding initial capacity.

Reference

- 1. P. Liu, K. Zhu, Y. Gao, Q. Wu, J. Liu, J. Qiu, Q. Gu and H. Zheng, *CrystEngComm*, 2013, **15**, 2753-2760.
- 2. L. Li, P. Liu, K. Zhu, J. Wang, J. Liu and J. Qiu, *J. Mater. Chem. A*, 2015, **3**, 9385-9389.
- 3. Y.-L. Ding, Y. Wen, C. Wu, P. A. van Aken, J. Maier and Y. Yu, *Nano Lett.*, 2015, **15**, 1388-1394.
- 4. S. Li, G. Liu, J. Liu, Y. Lu, Q. Yang, L.-Y. Yang, H.-R. Yang, S. Liu, M. Lei and M. Han, *J. Mater. Chem. A*, 2016, **4**, 6426-6432.
- 5. C. Niu, J. Meng, C. Han, K. Zhao, M. Yan and L. Mai, *Nano Lett.*, 2014, **14**, 2873-2878.
- L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang and Q. Zhang, *Adv. Mater.*, 2013, 25, 2969-2973.
- 7. C. V. Subba Reddy, E. H. Walker, S. A. Wicker, Q. L. Williams and R. R. Kalluru, *Current Applied Physics*, 2009, **9**, 1195-1198.
- 8. X. Rui, D. Sim, C. Xu, W. Liu, H. Tan, K. Wong, H. H. Hng, T. M. Lim and Q. Yan, *RSC Adv.*, 2012, **2**, 1174-1180.
- Q. Zhao, L. Jiao, W. Peng, H. Gao, J. Yang, Q. Wang, H. Du, L. Li, Z. Qi, Y. Si, Y. Wang and H. Yuan, *J. Power Sources*, 2012, **199**, 350-354.
- 10. C. Nethravathi, C. R. Rajamathi, M. Rajamathi, U. K. Gautam, X. Wang, D. Golberg and Y. Bando, *ACS Appl. Mater. Interfaces*, 2013, **5**, 2708-2714.
- 11. E. Uchaker, M. Gu, N. Zhou, Y. Li, C. Wang and G. Cao, *Small*, 2013, **9**, 3880-3886.
- 12. H. Zhao, L. Pan, S. Xing, J. Luo and J. Xu, *J. Power Sources*, 2013, **222**, 21-31.
- 13. L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan and J. Yang, *Nano Lett.*, 2013, **13**, 740-745.
- 14. Y.-L. Ding, J. Xie, G.-S. Cao, T.-J. Zhu, H.-M. Yu and X.-B. Zhao, *Adv. Funct. Mater.*, 2011, **21**, 348-355.
- 15. M. J. Lee, S. Lee, P. Oh, Y. Kim and J. Cho, *Nano Lett.*, 2014, **14**, 993-999.
- 16. S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li and S. Fan, *Adv. Mater.*, 2012, **24**, 2294-2298.
- 17. C. Zhu, Y. Yu, L. Gu, K. Weichert and J. Maier, *Angew. Chem. Int. Ed. Engl.*, 2011, **50**, 6278-6282.