Supporting Information

Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and its application in high performance lithium-sulfur batteries

Daying Guo, Xi'an Chen*, Huifang Wei, Menglan Liu, Feng Ding, Zhi Yang, Keqin Yang, Shun Wang, Xiangju Xu, Shaoming Huang*

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China. E-mail: <u>xianchen@wzu.edu.cn</u> (Xi'an Chen), <u>smhuang@wzu.edu.cn</u> (Shaoming Huang) Tel. and fax: +86 577 88373017

The preparation and adsorption of Lithium Polysulfide

Lithium polysulfide (Li₂S₆) was synthesized according to the literature ^[1]. The adsorption ability of the FCNS2-750, FCNS2-800, FCNS2-900, FCNS2-1000 and NFCNS2-900 on lithium polysulfide was investigated by UV-Vis spectroscopy (UV1800 spectrophotometer Shimadzu). Typically, 50 mg of each carbon host was placed in 5 mL of Li₂S₆ solution (5 mM), and the mixture was stirred for 30 min.

Electrode preparation, Cell assembling and electrochemical measurements

The different FHCS/S composite was mixed with carbon black and polyvinylidene fluoride (PVDF) at a mass ratio of 80:10:10 with N-methyl pyrrolidone (NMP) as a dispersant. Electrode paste was coated on aluminum foil with different specifications and was cutting into a film disk of 14 mm in diameter. The as-obtained film disk was dried in a vacuum oven at 60 °C for 12 h. CR2025-type coin cells were assembled by sandwiching FCNS2-900 or NFCNS2-900 coated celgard @ separator between the film disk and a lithium metal foil in a high-purity argon-filled glove box. 1 wt% anhydrous lithium nitrate (analytical grade) and 1 M LiN(CF₃SO₂)₂ (LiTFSI) in a mixed solvent of 1, 3-dioxolane (DOL) and dimethyl ether (DME) at a volume ratio

of 1:1 were used as the electrolyte, purchased from Fosai New Material Co., Ltd (Suzhou). The mass ratio of the electrolyte to sulfur is 40~50. The flexible freestanding FCNS2-900 or NFCNS2-900 coated celgard@ separator film was prepared by coating FCNS or NFCNS slurry composed of FCNS2-900 or NFCNS2-900 and PVDF with the weight ratio of 9:1 on the separator. After drying at 50 °C under vacuum, a large piece of flexible FCNS2-900 or NFCNS2-900 coated celgard separator was obtained and used as interlayer. The mass loading of FCNS2-900 or NFCNS2-900 in the interlayer is around 0.3 mg cm⁻² ^[2]. Galvanostatic charge/discharge tests were conducted to evaluate the electrochemical capacity and cycle stability of the electrodes on the basis of the active sulfur at current densities of 0.2 C, 0.5 C, 1 C, 2 C, 3 C, 5 C (1 C = 1675 mA g^{-1}) from 1.5 to 3.0 V using a LANHE instrument (Wuhan Land electronics Co., Ltd China). All the capacities were calculated based on the weight of sulfur in the cathodes other than mentioned specially. CV data were recorded on a CHI660e electrochemical workstation (Shanghai Chenhua) between 1.6 and 2.8 V to characterize the redox behavior and the kinetic reversibility of the cell. The AC impedance was measured with fresh cells at the open circuit potential, which was also carried out using a CHI 660e electrochemical workstation. The AC amplitude was 5 mV and the frequency ranged from 100 kHz to 0.01 Hz.

Materials characterization

The content of sulfur loading was confirmed using a TG/DTA thermogravimetric analyzer (Diamond PE) under an N₂ atmosphere at a heating rate of 10 °C min⁻¹ from room temperature to 600 °C, with a flow rate of 200 mL min⁻¹. SEM images were obtained with a Nova NanoSEM 200 scanning electron microscope (FEI, Inc.). TEM, HRTEM images were recorded with a JEOL2100 instrument. Powder XRD was carried on a Bruker D8 Advance X-ray diffractometer using CuKa radiation (λ = 0.15418 nm) at a scanning rate of 4°min⁻¹ in the 2 θ range from 10° to 80°. X-ray photoelectron spectroscopy (XPS) measurements were conducted with an ultrahigh vacuum setup, equipped with a monochromatic Al Ka X-ray source and a high resolution Thermo ESCALAB 250 analyzer. Raman spectra were collected on a Labram-010 microscopic confocal Raman spectrometer with a 633 nm laser excitation. Specific surface area, pore volume and pore size distribution were determined by the BET method on a Micromeritics ASAP 2020 instrument.

Fig. S1 SEM images of FCNS1-900(a, b) and FCNS3-900 (c, d).

Fig. S2 SEM images of FCNS2-750 (a), FCNS2-800 (b), FCNS2-900 (c), FCNS2-1000 (d).

Table S1 Specific surface area (SSA) and pore volume of FCNS2-750, FCNS2-800, FCNS2-900
and FCNS2-1000 evaluated by the Brunauer-Emmett-Teller (BET) and Density Functional Theory
(DFT) method, respectively.

Samples	SSA (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)
FCNS2-750	1104	1.33
FCNS2-800	1148	1.86
FCNS2-900	1151	1.95
FCNS2-1000	1081	1.74

Fig. S3 Raman spectrum of FCNS2-900.

Fig. S4 XRD pattern of FCNS2-900

Fig. S5 SEM images of FCNS2-750/S81% (a), FCNS2-800/S81% (b), FCNS2-900/S81% (c) and

(d) FCNS2-1000/S81%.

Fig. S6 The STEM-EDS elemental mapping of FCNS2-900/S81%

Fig. S7 The nitrogen adsorption and desorption isotherms of FCNS2-900 and FCNS2-900/S81%

Fig. S8 a, b, c, d) discharge-charge profiles of FCNS2-750/S81%, FCNS2-800/S81%, FCNS2-900/S81%, and FCNS2-1000/S81%, respectively.

Fig. S9 The Nyquist plots of the cells with the cells after cycling.

Fig. S10 Typical colors of electrolyte for the FCNS2-900/S81% cathode after various cycles in sealed vials. The solution obtained by soaking the cycled cathodes (discharge state) in a mixture of DOI/DME (1:1, vol).

Fig. S11 SEM images of FCNS2-900/S81% cathode: a) fresh; b) after 35 cycles; c) after 100 cycles; d) after 200 cycles.

Fig. S12 FCNS2-900/S 70%, FCNS2-900/S 81% and FNCNS2-900/S 90% of TGA curves.

Fig. S13 SEM images of FNCNS2-900

Fig. S14 XPS survey spectrum (a); high resolution XPS of N1s (b); high resolution XPS of O1s for NFCNS2-900

Table S2 The content of C, N and O in the NFCNS2-900 sample

Sample Name	С	Ν	0
NFCNS2-900	91.95%	5.68%	2.37%

Table S3	The ana	lvsis res	sults o	of N1s	XPS
		- / ~ - ~			

Sample Name	Total N	pyridinic-N	pyrrolic-N	graphitic-N	oxygen-N	
NFCNS2-900	5.68%	1.91%	0.30%	2.88%	0.59%	
Table S4 The analysis results of O1s XPS						
Sample Name	Total oxygen	C=O	C-0	С-О-С	О-Н	
NFCNS2-900	2.37%	0.17%	0.59%	1.25%	0.36%	

Fig. S15 a, b) Nitrogen adsorption-desorption curves isotherms and pore size distribution plots obtained using the DFT method of the NFCNS2-900

Table S5 Specific surface area and pore volume of FCNS2-900 and NFCNS2-900 evaluated by the Brunauer-Emmett-Teller (BET) and Density Functional Theory (DFT) method, respectively.

Samples	SSA (m2 g-1)	Pore Volume (cm ³ g ⁻¹)
FCNS2-900	1151	1.95
NFCNS2-900	1229	2.33

Fig. S16 The pore size distribution of NFCNS2-900 based on the BJH method.

Fig. S17 FCNS2-900/S and NFCNS2-900/S of TGA curves.

Fig. S18 a) Associated color changes of a polysulfide solution before and after exposure to the FCNS2-900 and NFCNS2-900, respectively adsorbents. (b) UV-vis spectra of a polysulfide solution before and after exposure to the FCNS2-900 and FNCNS2-900, respectively adsorbents.

Table S6 A comparison of comprehensive per	formance between this work and some other Li-S
cells based on the carbon materials reported in	previous literature.

		<u>.</u>		
Cathode materials	Sulfur	Capacity(calculate	stability (decay rate per	Refs.
(sulfur host)	Loading	based on the sulfur)	cycle)	
Tailoring Porosity in	70%	1015 0.2 C	0.1% per cycle at 1C	3
Carbon Nanospheres		920 0.5C		
		875 1C		
Hierarchical Porous	74%	1370 0.5C	0.25% decay for 100	4
Carbon nanosheets		1200 1C	cycles at 1 C	
		860 5C		
Hierarchical Vine-	60%	1418 0.5C (initial)	0.08% decay for 450	5
Tree-Like Carbon		997 3C	cycles at 1 C	
Nanotube Architectures		630 4C		
Polydopamine-Coated,	55%	1070 0.2C	0.1% decay per cycle	5
Nitrogen-Doped,		740 0.6C	for 150 cycles at 0.2 C	
Hollow Carbon				
Graphene/Sulfur	68%	1200 0.2 C	0.5% decay for 70	7
Hybrid Nanosheets		700 2C	cycles at 0.5 C	
		400 5C		
Pie-like electrode	72.3%	1,113 0.2 C	0.1% decay per cycle at	8
design		801 0.5C	0.1 C	
		688 1C		
		363 2C		
ultrahigh-surface-area	67%	1240 0.2C	0.07% decay per cycle	9
hollow carbon		1026 0.5C	at 0.5C	
nanospheres		965 1 C		

		655 2C		
Nitrogen-Doped	85%	1139 0.2C	0.12% decay for 200	10
Hollow Carbon		920 0.5C	cycles at 0.2 C	
Nanospheres		720 1C		
-		250 2C		
Hierarchical carbon	79.8%	1214 0.2 A g ⁻¹ 580 3	0.16 % decay for 300	11
nanocages		A g ⁻¹	cvcles at 1 A g ⁻¹	
h-CNT/S/ZrO ₂	45.2%	4c 1000	0.11% decay per cycle	12
composite cathode		10c 850	at 0.5 C	
Nitrogen and Sulfur	70%	1370 0 05c	0.052% decay per cycle	13
Dual-Doped Carbon	, 0, 0	1280 0.2C 1135	for 1000 cycles at 0.5 C	10
Duur Dopen Curoon		0.5C		
		830 2C		
Multichannel Carbon	80%	1351 at 0.2 C 847 at	0.07% decay per cycle	14
Nanofiber		5C	for 300 cycles at 0.2C	
Three-dimensional	90%	1382 0 5C 1242 1C	0.039% decay for	15
norous carbon	J070	1115 2 C	1000 cycles at 2 C	15
porous carbon		1115 20	1000 cycles at 2 C	
Granhitia aarban	770/	1024.0.5C	0.02159/ for 1000	16
	///0	1024 0.5C	0.021370 101 1000	10
nanocage		900 IC 875 2C	cycles decay at 1 C	
		075 2C 765 5C		
Lucomenting Calfor	700/	1009 0 50	0.00 0/ 1 for 500	17
Incorporating Sulfur	/0%	1068 0.50	0.08 % decay for 500	1/
Inside the Pores of		809 10	cycles at 0.5 C	
Carbons by An		725 2C		
Electrolysis Approach	0.00/	052 4C	0.000/ 1	2
Hignly Crumpled	80%	1100 0.2C	0.08% decay at 1.1/	2
Nitrogen-Doped		1000 0.50	mA cm ⁻²	
Graphene Sheets		950 IC		
	(0, (0))	1000 0 10 1000 0 50		10
$S_1/S_1O_2(a)$ Hierarchical	69.6 %	1230 0.1C 1002 0.5C	0.063% decay per cycle	18
Porous Carbon Spheres		907 IC	at 2 C	
		730 1.5C		
		614 2C		
Mesoporous Carbon	60%	753 lc	0.093 % decay for 100	19
Nanotube Network		701 2c	cycles	
		655 5c		
N-Doped Hollow	70%;	1065 0.5C	0.053% decay for 400	20
Porous Carbon Bowls		882 1C	cycles at 1 C	
		785 2C		
		600 3C		
		535 4C		
Hierarchical Porous	68%	887 0.1 C	0.11% decay for 150	21
Graphene		656 5C	cycles at 0.5 C	

N-doped flower-like	81%	1190 0.5 C	0.03% decay per cycle	This
carbon nanospheres		1051 1C	at 1 C	work
		953 2C		
		901 3C		
		829 5C		
Flower-like carbor	81%	1190 0.5 C	0.056% decay per cycle	This
nanospheres		1070 1C	at 1 C	work
		960 2C		
		893 3C		
		730 5C		

References:

- 1. Q. Sun, B. He, X.-Q. Zhang, A.-H. Lu, ACS Nano, 2015, 9, 8504-8513.
- 2. J. X. Song, Z. X. Yu, M. L. Gordin, D. H. Wang. Nano Lett., 2016, 16, 864-870.
- G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L. F. Nazar, ACS Nano 2013, 7, 10920-10930.
- X. A. Chen, Z. B. Xiao, X. T. Ning, Z. Liu, Z. Yang, C. Zou, S. Wang, X. H. Chen, Y. Chen, S. M. Huang, Adv. Energy Mater. 2014, 4, 1301988.
- M. Q. Zhao, H. J. Peng, G. L. Tian, Q. Zhang, J. Q Huang, X. B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051-7058
- 6. W. D. Zhou, X. C. Xiao, M. Cai, L. Yang, Nano Lett. 2014, 14, 5250-5256.
- L. F. Fei, X. G. Li, W. T. Bi, Z. W. Zhuo, W. F. Wei, L. Sun, W. Lu, X. J. Wu, K. Y. Xie, C. Z. Wu, H. L. W. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936-5942.
- 8. Z. Li, J. T. Zhang, Y. M. Chen, J. Li, X. W. Lou, Nat. Commun. 2015, 6, 8850.
- F. Xu, Z. W. Tang, S. Q. Huang, L. Y. Chen, Y. R. Liang, W. C. Mai, H. Zhong, R. W. Fu, D. C. Wu, Nat. Commun. 2015,6:7221.
- W. D. Zhou, C. M. Wang, Q. L. Zhang, H. D. Abruña, Y. He, J. W. Wang, S. X. Mao, X. C. Xiao, Adv. Energy Mater. 2015, 5, 1401752.
- 11. Z. Y. Lyu, D. Xu, L. J. Yang, R. C. Che, R. Feng, J. Zhao, Y. Li, Q. Wu, X. Z. Wang, Z. Hu. Nano Energy, 2015, 12, 657-665.
- 12. Y. Zhou, C. G. Zhou, Q. Y. Li, C. J. Yan, B. Han , K. S. Xia, Q. Gao, J. P. Wu, Adv. Mater. 2015, 27, 3774-3781.
- 13. Q. Pang, J. T. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021-6028.
- 14. J. S. Lee, W. Kim, J. Jang, A. Manthiram, Adv. Energy Mater. 2016, 1601943.
- 15. G. X. Li, J. H. Sun, W. P. Hou, S. D. Jiang, Y. Huang, J. X. Geng, Nat. Commun. 2016, 7, 10601.

- 16. J. Zhang, C. P. Yang, Y. X. Yin, L. J. Wan, Y. G. Guo, Adv. Mater. 2016, 28, 9539-9544.
- 17. B. He, W. C. Li, C. Yang, S. Q.Wang, A. H. Lu, ACS Nano, 2016, 10, 1633-1639.
- 18. S. Rehman, S. J. Guo, Y. L. Hou, Adv. Mater. 2016, 28, 3167-3172.
- L. Sun, D. T. Wang, Y. F. Luo, K. Wang, W. B. Kong, Y. Wu, L. Zhang, K. L. Jiang, Q. Q. Li, Y. H. Zhang, J. P. Wang, S. S. Fan. ACS Nano, 2016, 10, 1300-1308.
- 20. F. Pei, T. H. An, J. Zang, X. J. Zhao, X. L. Fang, M. S. Zheng, Q. F. Dong, N. F. Zheng, Adv. Energy Mater. 2016, 1502539.
- 21. C. Tang, B. Q. Li, Q. Zhang, L. Zhu, H. F. Wang, J. L. Shi, F. Wei, Adv. Funct. Mater. 2016, 26, 577-585.