Incorporation of Pd catalyst at fuel electrode of thin-film-based solid oxide cell by multi-layer deposition and its impact on low-temperature co-electrolysis

Cam-Anh Thieu, Jongsup Hong, Hyoungchul Kim, Kyung Joong Yoon, Jong-Ho Lee, Byung-Kook Kim and Ji-Won Son

b. Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333, Korea.

* Corresponding authors: J.-W. Son (jwson@kist.re.kr)

Keywords: low-temperature co-electrolysis, Pd incorporation, fuel electrode functional layer, thin film-based solid oxide cell
Fig. S1. Schematic of Co-EC testing system.40 (Reprinted by permission from J. Power Sources, 280, 630. Copyright (2015) Elsevier).
Fig. S2. I-V-P curves at 600 ºC in fuel cell mode of TF-SOCs with C3 and C4 FEFL configurations

Fig. S3. (a) A SAED pattern and (b) HR-TEM image showing the lattice images of the Pd-Ni alloy
Fig. S4. Nyquist plots of 2 cells measured during LT-Co-EC testing at OCV at (a) 600 °C, (b) 550 °C and (c) 500 °C
Fig. S5. Morphology of (a) Pd-cell and (b) Ref-cell in fuel electrode functional layer (FEFL).49 (Fig. S5. (b) is reproduced from permission of Electrochem. Solid-State Lett, 14, B26. Copyright (2010) The Electrochemical Society.)