Supplementary Information

Hybrid Lithium-Ion Capacitors with Asymmetric Graphene Electrodes

Yige Sun,1,2 Jie Tang,1,2,* Faxiang Qin,3 Jinshi Yuan,1 Kun Zhang,1 Jing Li,1,2 Da-Ming Zhu,4 Lu-Chang Qin5

1National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan. *E-mail: tang.jie@nims.go.jp

2Doctoral Program in Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. *E-mail: tang.jie@nims.go.jp

3Institute for Composite Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China

4Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA

5Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
Figure S1 Electrochemical performance of AC in AC//AC device: a) Galvanostatic charge-discharge curves at various current densities, b) Rate performance. Electrochemical performance of SG in SG//SG device under various voltage: 2.7 V, 2.8 V and 3 V: c) Cyclic voltammetry at the scan rate of 200 mV s$^{-1}$, d) Rate performance.

Figure S1 compared the electrochemical performance of AC and SG in an EDLC device (AC//AC and SG//SG respectively). The specific capacitance of SG was up to 145 F g$^{-1}$ under a current density of 50 mA g$^{-1}$. It was slowly reduced to 101 F g$^{-1}$ when the current density was increased to 1 A g$^{-1}$. This value is much larger than that of the symmetric capacitor device AC//AC, as shown in Figure S1a and 1b. The specific capacitance of AC was only 60 F g$^{-1}$, and quickly dropped to 31 F g$^{-1}$, keeping only 53% of its initial capacitance compared to 70% for SG. When the voltage window increased slightly to 2.8 V and 3 V, the SG//SG kept its EDLC performance as shown in Figure S1c and 1d.
As shown in Figure S2a, the voltammetry characteristics curves of the SG//Li device exhibit near rectangular shapes under increasing scan rates. This result, indicative of the excellent non-faradaic behavior of SG, can be confirmed by the nearly straight galvanostatic charge-discharge curves under increasing current densities in Figure S2b. The anions were adsorbed and desorbed quickly within the potential range from 2 V to 4V vs. Li/Li\(^+\). The cycling performance of the SG//Li device is shown in Figure S2c. The capacitance retention and coulombic efficiency were 91% and 96% after 250 cycles, respectively. As shown in Figure S2d, the SG exhibited excellent rate performance in the SG//Li device.
Figure S3 Electrochemical performance of Graphite anode: a) Cyclic voltammograms at a potential scan rate of 0.1 mV s\(^{-1}\), b) Galvanostatic charge-discharge curves at 50 mA g\(^{-1}\), inset are the photos of graphite electrode before and after lithium-intercalation.

After pre-lithiation, the color of reference graphite anode (Figure S3) change from black to golden, indicating a high pre-lithiation degree through this method. Compared with graphite, which has been commonly used as the anode material in LIB and LIC, the cyclic voltammogram (CV) curve of Li-SG (Figure 3a) exhibits a typical feature of nano-size carbonaceous materials.