Supporting Information

Novel carbon channels from loofah sponge for construction of metal sulfide@carbon composites with robust electrochemical energy storage

Dong Xie, Xin-hui Xia,∗ Wang-jia Tang, Yu Zhong, Ya-dong Wang, Dong-huang Wang, Xiu-li Wang, and Jiang-ping Tu ∗

a State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
*Email: helloxxh@zju.edu.cn; tujp@zju.edu.cn

b School of Engineering, Nanyang Polytechnic, 569830, Singapore

Figure S1. SEM image of pristine loofah sponge fibre.
Figure S2. SEM (a-b) and TEM (c-d) images of LSDCM/MoS$_2$.

Figure S3. SEM (a) and TEM (b) images of pristine MoS$_2$.
Figure S4. TGA curve of LSDCM/MoS$_2$/N-C composite

Figure S5. Electrochemical performance of LSDCM used in LIBs: (a) CV curves at a scan rate of 0.1 mV s$^{-1}$ between 0.01 and 3.0 V and (b) Galvanostatic discharge/charge profiles at 200 mA g$^{-1}$.
Figure S6. Cycling stability of LSDCM/MoS$_2$/N-C for LIBs at a high current density of 4 A g$^{-1}$

![Graph](image1.png)

Figure S7. A SEM image of LSDCM/MoS$_2$/N-C after 50 cycles.

![SEM Image](image2.png)
Figure S8. Electrochemical performance of LSDCM for SIBs: (a) CV curves at a scan rate of 0.1 mV s$^{-1}$ between 0.01 and 3.0 V (vs. Na$^+$/Na) and (b) Galvanostatic discharge-charge profiles at 200 mA g$^{-1}$.

Figure S9. Cycling stability of LSDCM/MoS$_2$/N-C for SIBs at a high current density of 4 A g$^{-1}$.
Figure S10. Schematic illustration of advantages for lithium or sodium storage.