Electronic Supplementary Information (ESI†)

Constructing Magnetic Si-C-Fe Hybrid Microspheres for Room Temperature Nitroarenes Reduction

Xiaofei Zhang,* Lixin Chen,* Jin Yun,* Xiaodong Wang, and Jie Kong,*

*aMOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China

School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

Corresponding author e-mail addresses:

kongjie@nwpu.edu.cn (J.K.) and x.wang@abdn.ac.uk (X.W.)
Fig. S1 (a) Powder XRD pattern and (b) Raman spectrum of the synthesized Si-C-Fe hybrid microspheres.
Fig. S2 UV-vis absorption spectra during reduction of 4-NP without catalysts.
Fig. S3 UV-vis absorption spectra during reduction of 4-NP with the pyrolyzed PDVB microspheres.
Fig. S4 UV-vis absorption spectra and linear relationship of ln(\(A_t/A_0\)) as a function of time during reduction of 4-NP using different amounts of Si-C-Fe hybrid microspheres. (a) and (b): 2 mg and (c) and (d): 8 mg, respectively.
Fig. S5 UV-vis absorption spectra during Si-C-Fe hybrid microspheres promoted reduction of 4-NP at 0 °C.
Fig. S6 UV-vis absorption spectra during the commercial metallic Fe powder promoted reduction of 4-NP.