Supporting Information

Dimensionally stable hexamethylenetetramine functionalized polysulfone anion exchange membranes

Wanting Chen, a Mengmeng Hu, a Haochen Wang, b Xuemei Wu, a, * Xue Gong, a Xiaoming Yan, a, c Dongxing Zhen, a Gaohong He a, c, *

a State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
c School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, China
*E-mail: xuemeiw@dlut.edu.cn; hgaohong@dlut.edu.cn.

Table of Contents

Fig. S1. RDFs and CNs of different atoms in the dry PSF-ImOH membrane. ...S2
Fig. S2. RDFs and CNs of different atoms in the dry PSF-QuOH membrane.S3
Fig. S3. RDFs (solid lines) and CNs (dashed lines) of N+-N in the dry and hydrated (a) PSF-QuOH and (b) PSF-ImOH membranes. (WU: water uptake)..S3
Table S1. Coordination Numbers of different atoms..S4
Fig. S4. TGA and DTG curves of the PSF-QuOH 1.67 membrane. ...S4
Fig. S5. FTIR of the PSF-QuOH 1.94 membrane before and after 1 M KOH immersion at 60 °C for 168h..S5
Fig. S6. Alkaline stability of the PSF-QuOH 1.39 in 4 M NaOH at 80 °C ...S5
Fig. S7. 1H NMR spectra of BHMTA degradation in 1 M NaOH CD3OD/D2O (3:1)..........................S6
Fig. S8. Chemical shift correlated spectroscopy (COSY) of BHMTA degradation products S6
Fig. S1. RDFs and CNs of different atoms in the dry PSF-ImOH membrane.
Fig. S2. RDFs and CNs of different atoms in the dry PSF-QuOH membrane.

Fig. S3. RDFs (solid lines) and CNs (dashed lines) of N⁺-N in the dry and hydrated (a) PSF-QuOH and (b) PSF-ImOH membranes. (WU: water uptake)
Table S1 Coordination Numbers of different atoms.

<table>
<thead>
<tr>
<th>AEMs</th>
<th>N^{+}-O_{1}</th>
<th>N^{+}-O_{2}</th>
<th>N^{+}-O(S)</th>
<th>N-S</th>
<th>N^{+}-N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r^a (Å)</td>
<td>CN(O_{1})</td>
<td>r^a (Å)</td>
<td>CN(O_{2})</td>
<td>r^a (Å)</td>
</tr>
<tr>
<td>PSF-ImOH</td>
<td>-^b</td>
<td>0</td>
<td>-^b</td>
<td>0</td>
<td>4.9</td>
</tr>
<tr>
<td>PSF-QuOH</td>
<td>-^b</td>
<td>0</td>
<td>-^b</td>
<td>0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

^a Upper boundary for integration of the first shell.

^b The first peaks of the RDFs (except for the first strong peaks (<4 Å)) are very weak. This indicates the atoms are uniform distribution in the AEMs and the corresponding CNs are close to zero.

^c 4CN(N)=CN(total)-CN(one repeat unit), CN(total) is the integration of the RDFs; CN(one repeat unit) is the number of N atoms around N^{+} ion in one repeat unit, and equal to 1 for PSF-ImOH and 3 for PSF-QuOH, respectively.

Fig. S4. TGA and DTG curves of the PSF-QuOH 1.67 membrane.
Fig. S5. FTIR of the PSF-QuOH 1.94 membrane before and after 1 M KOH immersion at 60 °C for 168 h.

Fig. S6. Alkaline stability of the PSF-QuOH 1.39 after 4 M NaOH immersion at 80 °C for 264 h.
Fig. S7. 1H NMR spectra of BHMTA degradation in 1 M NaOH CD$_3$OD/D$_2$O (3:1).

Fig. S8. Chemical shift correlated spectroscopy (COSY) of BHMTA degradation products.