Supplementary Information

Uni-directional Liquid Spreading Control on Bio-inspired Surface from the Peristome of *Nepenthes alata*

Huawei Chen,a Liwen Zhang,a Yi Zhang,a Pengfei Zhang,a Deyuan Zhang,a and Lei Jiangb

a. School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.
b. Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

Fig. S1 Water Uni-directional spreading on surface structure with different (a) surface wettability and (b) viscosity. Time needed for liquid spreading pass structural periods with different surface contact angle.

Fig. S2 Two main structural features. (a) curvature of arc edge includes straight (S), circle arc (C) and ellipse arc (E). (b) wedge angle of microcavity β ranging from about 50° to 110°.
Fig. S3 The size of surface structures. (a) straight, (b) circle arc and (c) ellipse arc. The pit inclined angle β for all types of arc edge curvature include 50°, 70°, 80° and 110°. The width of each groove w in all types of surface structures is approximately $120 \, \mu m$. The depth of overlaid grooves $h1$ and pits $h2$ are both about $30 \, \mu m$. The length of each stage $d1$ between pits is $120 \, \mu m$. The length of each pit $d2$ is $200 \, \mu m$. The radius of circle arc r is $60 \, \mu m$. The semi-major axis length of ellipse arc a contains 110, 150 and $190 \, \mu m$.

Fig. S4 The anisotropic liquid spreading factor ξ_d and liquid climbing height in different surface structures. With arc edge curvature growing, liquid spreading factor ξ_d increases (a), and the
climbing height of five surface structures decreases (b) with front direction vertically immersed into liquid. With microcavity wedge angle β growing, liquid spreading factor ξ reduces (c), and the climbing height of five surface structures rises (d) with front direction vertically immersed into liquid.

Video S1. Liquid spreading on surface structures with different arc edge curvature.

Video S2. Liquid spreading in surface structures with different microcavity wedge angle β.

Video S3. Pinning failure happened on surface structure with small arc edge curvature ($C60$, $\theta = 50^\circ$) and large wedge angle β ($E190$, $\theta = 110^\circ$).