Supporting Information

Synergistic Effect of Interfacial Phenomenon on Enhancing Catalytic Performance of Pd Loaded MnOₓ-CeO₂-C Hetero-nanostructure for Hydrogenation and Electrochemical Reactions

Ammar Bin Yousaf a,b*, Muhammad Imran b, Syed Javaid Zaidi a, Peter Kasak a, Tariq Mahmood Ansari c, Suryyia Manzoor c and Ghazala Yasmeen c

a Center for Advanced Materials, Qatar University, Doha 2713, Qatar

b Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, P.R. China

c Institute of Chemical Sciences, Bahauddin Zakaria University, Multan 60800, Pakistan

Corresponding Author’s E-mail: muhammad.ammar@qu.edu.qa, ammar@mail.ustc.edu.cn

Fig. S1. Temperature-programmed reduction (TPR) spectra of (a) MnOₓ-CeO₂-C and (b) Pd/MnOₓ-CeO₂-C catalysts.
Fig. S2 4-NP absorption peak before and after addition of NaBH₄.
Fig. S3 (a) UV-absorption spectra for the reduction of 4-nitrophenol into 4-aminophenol by using catalyst CeO$_2$/C and (b) 4-NP reduction efficiencies by using different %age of CeO$_2$. (c) UV-absorption spectra for the reduction of 4-nitrophenol into 4-aminophenol by using catalyst MnO$_x$/CeO$_2$/C and (d) 4-NP reduction efficiencies by using different %age of MnO$_x$.
Fig. S4 C/C_0 vs Time plot and inset $\ln C/C_0$ vs Time of 4-nitrophenole reduction for $\text{MnO}_x/\text{CeO}_2/\text{C}$ to measure the rate constant “k” of reaction.

Fig. S5 (a) Conversion % vs time for Hydrogenation of styrene for CeO_2/C catalysts at varied %age of CeO_2 and (b) Conversion % vs time for Hydrogenation of styrene for $\text{MnO}_x/\text{CeO}_2/\text{C}$ catalysts at varied %age of MnO_x.
Fig. S6 (a) ORR performance comparison for the catalyst Pd/MnO\textsubscript{x}-CeO\textsubscript{2}-C and the catalyst (PdCeO\textsubscript{2}-C) in the absence of MnOx in similar experimental conditions, environment with rotation of 1600 rpm, (b) FAOR performance comparison for the catalyst Pd/MnO\textsubscript{x}-CeO\textsubscript{2}-C and the catalyst (PdCeO\textsubscript{2}-C) in the absence of MnOx in similar experimental conditions, (c) Current density column graph for the FAOR performance of different Pd % loadings in Pd/MnO\textsubscript{x}-CeO\textsubscript{2}-C catalyst to represent the optimal Pd wt% for electrochemical performance.