Supporting information

Hollow-ZIFs-Templated Formation of ZnO@C-N-Co Core-Shell Nanostructure for Highly Efficient Pollutant Photodegradation

Huirong Chen, Kui Shen,* Junying Chen, Xiaodong Chen and Yingwei Li*

Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

E-mail: cekshen@scut.edu.cn (K. S.); liyw@scut.edu.cn (Y. L.)
Figure Captions

Figure S1. XRD patterns of the sample obtained by pyrolyzing the hollow Zn/Co-ZIF at 550 °C (denoted as Zn/Co-ZIF-550) and at 700 °C (denoted as Zn/Co-ZIF-700).

Figure S2. (a) Low- and (b) high-resolution TEM images, STEM image (c) and EDS mappings (d-h) of the sample prepared by pyrolyzing the hollow Zn/Co-ZIF at 550 °C.

Figure S3. (a) Low- and (b) high-resolution TEM images of the hollow carbon-cobalt-based structure obtained at 700 °C.

Figure S4. (a) and (b) TEM images of the as-prepared ZnO@C-N-Co.

Figure S5. (a) SEM image, (b) and (c) TEM images of ZIF-67. (d) SEM image, (e) and (f) TEM images of ZIF-67-600.

Figure S6. (a) SEM image, (b) and (c) TEM images of ZIF-8. (d) SEM image, (e) and (f) TEM images of ZIF-8-600.

Figure S7. (a) SEM image, (b) and (c) TEM images of ZnO.

Figure S8. TG curves of the as-sythesized ZIF-67, ZIF-8, and hollow Zn/Co-ZIF.

Figure S9. XPS survey spectrums of ZIF-67, ZIF-8, hollow Zn/Co-ZIF, and commercial pure ZnO.

Figure S10. A magnified TEM image of Figure 5b.

Figure S11. UV-vis absorption spectras of the photocatalytic degradation of MO in the presence of (a) ZnO@C-N-Co, (b) ZnO, (c) ZIF-8-600, and (d) ZIF-67-600, respectively. Inset of (a) shows the molecular structural formula of MO.

Figure S12. UV-vis absorption spectras of the photocatalytic degradation of MO in the absence of catalyst (a) and without light (b).

Figure S13. UV-Vis spectra of the adsorption of MO using the ZIF-8-600, ZnO@C-N-Co, ZIF-67-600, and pure ZnO as adsorbent.

Captions for Tables

Table S1. Physicochemical properties of ZnO@C-N-Co, ZIF-8-600 and ZIF-67-600.

Table S2. Experiment of degradation of MO.
Figure S1. XRD patterns of the samples obtained by pyrolyzing the hollow Zn/Co-ZIF at 550 °C (denoted as Zn/Co-ZIF-550) and at 700 °C (denoted as Zn/Co-ZIF-700).
Figure S2. (a) Low- and (b) high-resolution TEM images, STEM image (c) and EDS mappings (d-h) of Zn/Co-ZIF-550.
Figure S3. (a) Low- and (b) high-resolution TEM images of Zn/Co-ZIF-700.
Figure S4. (a) and (b) TEM images of the as-prepared ZnO@C-N-Co.
Figure S5. (a) SEM image, (b) and (c) TEM images of ZIF-67. (d) SEM image, (e) and (f) TEM images of ZIF-67-600.
Figure S6. (a) SEM image, (b) and (c) TEM images of ZIF-8. (d) SEM image, (e) and (f) TEM images of ZIF-8-600.
Figure S7. (a) SEM image, (b) and (c) TEM images of ZnO.
Figure S8. TG curves of the as-synthesized ZIF-67, ZIF-8, and hollow Zn/Co-ZIF.
Figure S9. XPS survey spectra of ZIF-67, ZIF-8, hollow Zn/Co-ZIF, and commercial pure ZnO.
Figure S10. A magnified TEM image of Figure 5b.
Figure S11. UV-vis absorption spectra of the photocatalytic degradation of MO in the presence of (a) ZnO@C-N-Co, (b) ZnO, (c) ZIF-8-600, and (d) ZIF-67-600, respectively. Inset of (a) shows the molecular structural formula of MO.
Figure S12. UV-vis absorption spectra of the photocatalytic degradation of MO in the absence of catalyst (a) or without light (b).
Figure S13. UV-vis spectra of MO aqueous solution before and after adding various samples to compare their adsorption capability.
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Co loading<sup>a</sup> (wt %)</th>
<th>Zn loading<sup>a</sup> (wt %)</th>
<th>S<sub>BET</sub><sup>b</sup> (m<sup>2</sup>g<sup>-1</sup>)</th>
<th>Pore volume<sup>c</sup> (m<sup>3</sup>g<sup>-1</sup>)</th>
<th>Mesopore volume<sup>d</sup> (m<sup>3</sup>g<sup>-1</sup>)</th>
<th>Mesopore size<sup>e</sup> (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO@C-N-Co</td>
<td>10.9</td>
<td>25.7</td>
<td>188</td>
<td>0.36</td>
<td>0.34</td>
<td>10.5</td>
</tr>
<tr>
<td>ZIF-8-600</td>
<td>/</td>
<td>29.4</td>
<td>728</td>
<td>0.43</td>
<td>0.04</td>
<td>13.8</td>
</tr>
<tr>
<td>ZIF-67-600</td>
<td>37.8</td>
<td>/</td>
<td>316</td>
<td>0.23</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

^aMeasured by AAS. ^bS_{BET} is calculated by the Brunauer-Emmett-Teller equation. ^cTotal pore volume is determined by using the adsorption branch of the N₂ isotherm at P/P₀=0.99. ^dMsopore volume is obtained from the BJH cumulative specific absorption volume of pore 1.70-300.00 nm diameter. ^eMesopore diameter is determined from the local maximum of the BJH distribution of pore diameters obtained in the adsorption branch of the N₂ isotherms.
Table S1. Experiment of degradation of MO.

<table>
<thead>
<tr>
<th>Items</th>
<th>C/C<sub>0</sub><sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t=0 h</td>
</tr>
<tr>
<td>ZIF-67-600</td>
<td>1.000</td>
</tr>
<tr>
<td>ZIF-8-600</td>
<td>1.000</td>
</tr>
<tr>
<td>ZnO</td>
<td>1.000</td>
</tr>
<tr>
<td>ZnO@C-N-Co</td>
<td>1.000</td>
</tr>
<tr>
<td>Under light without catalyst</td>
<td>1.000</td>
</tr>
<tr>
<td>No ligth with ZnO@C-N-Co catalyst</td>
<td>1.000</td>
</tr>
</tbody>
</table>

^aC and C₀ are the initial concentration after the equilibrium adsorption and the reaction concentration of methyl orange, respectively.