Supplementary Information

Investigation into the stability of Li metal anodes in Li–O\textsubscript{2} batteries with a redox mediator

Seongmin Haa,b, Youngjin Kima, Dongho Kooa, Kwang–Ho Haa, Yuwon Parka, Dong–Min Kima, Samick Sonc, Taeun Yimd,* and Kyu Tae Leea,*

a School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak–ro, 1 Gwanak–gu, Seoul 08826, Republic of Korea
b School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST–gil, Ulsan 44919, Republic of Korea
c Environment and Energy Research Team, Division of Automotive Research and Development, Hyundai Motor Company, 37 Cheoldobangmulgwan–ro, Uiwang–si, Gyeonggi–do 16082, Republic of Korea
d Department of Chemistry, Incheon National University, 119 Academy–ro, Yeonsu–gu, Incheon 22012, Republic of Korea

Corresponding authors
E–mail: (K. T. Lee) ktlee@snu.ac.kr, (T. Yim) yte0102@inu.ac.kr
Figure S1. Ex situ scanning electron microscope (SEM) images of the charged porous oxygen cathodes in the Li–O \textsubscript{2} cells (a) without 10–methylphenothiazine (MPT) and (b) with MPT after 10 cycles.