Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information for:

Chalcogenide and Pnictide Nanocrystals from the Silylative Deoxygenation of Metal Oxides

Chia-Cheng Lin,¹ Shannon J. Tan¹ and Javier Vela^{1,2,*}

¹Department of Chemistry, Iowa State University, and ²Ames Laboratory, Ames, Iowa, 50011

Corresponding Author

* vela@iastate.edu

Material	Character
NiO	Semiconducting (4.0 eV) ¹
Ni ₃ S ₂	Metallic
Ni ₅ Se ₅	unknown
Ni ₂ P	Metallic
СоО	Semiconducting $(3.4, ^i 4.5 \text{ eV}^d)^2$
Co ₃ O ₄	Semiconducting (2.13, 3.95 eV) ³
Co ₉ S ₈	Metallic
Co ₉ S ₈	Metallic
Co ₃ Se ₄	unknown
СоР	Metallic
Co ₂ P	Metallic
NiCo ₂ O ₄	Semiconducting (2.06, 3.63 eV) ⁴
(Ni/Co) ₉ S ₈	unknown

Table S1. Optoelectronic properties of select Ni and Co chalcogenides

¹ J.Y. Corey, Chem. Rev. 111 (2011) 863.

² C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Phys. Rev. B 79 (2009) 235114-1.

³ R. Xu, H.C. Zeng, Langmuir 20 (2004) 9780.

⁴ B. Cui, H. Lin, Y.Z. Liu, J.B. Li, P. Sun, X.C. Zhao, C.J. Liu, J. Phys. Chem. C 113 (2009) 14083.

Figure S1. Powder XRD data for NiO nanocrystals (Scherrer: 14.1±0.4 nm), bulk NiO reference (a) and representative TEM image of NiO nanocrystals (18±4 nm) (b).

Figure S2. Powder XRD patterns of NiO nanocrystals and their silvlative deoxygenation product upon reaction with TMS₂Se. Reported XRD patterns for bulk rock salt NiO(*) and Ni₅Se₅ (\$) are shown for comparison.

Figure S3. DP-MAS ²⁹Si NMR spectra of Co_9S_8 (a) and Ni_3S_2 (b). The sharp peak at *ca.* -25 ppm is associated with residual silicone grease.

Figure S4. M, D, T and Q silicons in ²⁹Si NMR.

Table S2. Bond dissociation energies.		
Si-O	800 kJ / mol	
Si-C	447 kJ / mol	
С-Н	338 kJ / mol	

$$(Me_3Si)_nE + M_2O_x \longrightarrow n(Me_3Si)O \cdot / (Me_3Si) \cdot + M_nE_x$$

$$H_{3}C \xrightarrow{H_{3}C} H_{3}C \xrightarrow{H_{3}C} nSiO_{2} + C_{2}H_{4}/CH_{4}/C_{2}H_{6}/C_{2}H_{2}$$

$$H_{3}C \xrightarrow{H_{3}C} H_{3}C$$

Scheme S1. Possible decomposition mechanism of excess trimethylsiyl reagents. See: A. Sonnenfeld, T. M. Tun, L. Zajickova, K. V. Kozlov, H.-E. Wagner, J. F. Behnke, R. Hippler, Plasmas and Polymers 6 (2002) 237.

Figure S5. Representative bright field TEM (a) and HAADF-STEM (b) images of Ni_5Se_5 nanocrystals produced by silvlative deoxygenation of NiO with TMS₂Se. Inset shows a magnified image of one hollow particle.

Figure S6. Solution-phase optical density spectra of aliquots during the reaction (a) and powder XRD data of Co_3O_4 nanocrystals, products the silvlative deoxygenation of Co_3O_4 with TMS₂S and bulk references (b) (* = CoO, \$ = Co_9S_8).

Figure S7. Representative TEM images of Co_3O_4 nanocrystals (a), bright field image (b) and HAADF-STEM image (c) of product after 25 h of silvlative deoxygenation of Co_3O_4 with TMS₂S.

Figure S8. Solution-phase optical density spectra of aliquots during the silvlative deoxygenation of Co_3O_4 with TMS₂Se reaction (a) and wide angle powder XRD data for Co_3O_4 nanocrystals, product after 20 h of reaction and bulk references (b) (* = CoO, \$ = MgAl₂O₄ spinel-type Co_3Se_4).

Figure S9. Representative TEM images of Co_3Se_4 nanocrystals after the silvlative deoxygenation of Co_3O_4 with TMS₂Se; (a) shows a high magnification image of one particle with hollow morphology; (b) shows an HAADF-STEM image.

Figure S10. Powder XRD patterns of CoO nanocrystals and their silvlative deoxygenation product upon reaction with TMS₃P. Reported XRD patterns for bulk rock salt CoO (*), MnP-type CoP (\ddagger), and MnP-type Co₂P (\$) are shown for comparison. Also shown is the synthetic Co/P ratio, determined by dividing three times the chemical amount (in moles) of Co₃O₄ over that of TMS₃P.

Figure S11. Representative TEM (a, b), and registered HAADF-STEM/EDS images (c) of NiCo₂O₄ nanocrystals (a) and the silvlative deoxygenation product with TMS₂S (b, c). The scale bar in c corresponds to 50 nm.

Figure S12. Powder XRD data for silvlative deoxygenation of NiO \subset SiO₂ with TMS₂S, product and bulk references (* = NiO, \ddagger = Ni₃S₂, \$ = Ni₉S₈).

Figure S13. UV-Vis absorption spectra of aliquots during the silvlative deoxygenation of Co_3O_4 /porous-SiO₂ with TMS₂S (a) and powder XRD data for Co_3O_4 /porous-SiO₂, product and bulk references (* = CoO, \$ = Co₉S₈).

Figure S14. Representative TEM images of Co_3O_4 (a), Co_3O_4 /porous-SiO₂ (3 nm-thick shell) (b), and its silvative deoxygenation product with TMS₂S, Co_9S_8 /SiO₂ (c, d).

Figure S15. Nitrogen physisorption isotherms and BJH pore size distributions of NiO (a), Ni_3S_2 (b), CoO (c) and Co_9S_8 (d). The low surface area measurements indicate the resulting silica shells are not significantly porous. Introduction of a porous structure may require the use of a surfactant during the silylative deoxygenation process.