Electronic Supplementary Information

Na_{0.35}MnO₂ as an ionic conductor with randomly distributed nano-sized layers

Arturas Adomkevicius, Laura Cabo-Fernandez, Tzu-Ho Wu, Tzu-Man Ou, Ming-Guan Chen, Yuri Andreev*, Chi-Chang Hu* and Laurence J. Hardwick*

Arturas Adomkevicius, Dr. Laura Cabo-Fernandez, Dr. Tzu-Ho Wu, Prof. Laurence J. Hardwick* Stephenson Institute for Renewable Energy, Department of Chemistry University of Liverpool Chadwick Building, Peach Street Liverpool, L69 7ZF, United Kingdom E-mail: hardwick@liverpool.ac.uk

Arturas Adomkevicius, Dr. Tzu-Ho Wu, Tzu-Man Ou, Ming-Guan Chen, Prof. Chi-Chang Hu* Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, 30013 Taiwan. E-mail: <u>cchu@che.nthu.edu.tw</u>

Dr. Yuri Andreev* School of Chemistry, University of St Andrew St Andrews, KY16 9ST Scotland, United Kingdom E-mail: <u>ya@st-andrews.ac.uk</u>

Contents

1. Elemental analysis	3
2. Powder X-ray diffraction analysis	4
3. Brunauer – Emmett – Teller characterisation	5
4. Transmission electron microscopy and Raman spectroscopy	6
5. Electrochemical characterisation	8
6. X-ray absorption spectroscopy	9
7. References	11

1. Elemental analysis

The chemical composition of the compound was determined as Na_{0.35}MnO₂ by elemental analysis via inductively coupled plasma optical emission spectroscopy (ICP-OES) (see Table S1).

Spectroscopy (I	CP-OES).		
Sample	Na wt%	Mn wt%	Formula
A - Na_xMnO_2	8.81	59.53	
B - Na_xMnO_2	8.71	60.17	Na _{0.35} MnO ₂ *
C - Na_xMnO_2	8.69	58.72	

Table S1. Elemental analysis of Na_{0.35}MnO₂ by Inductively Coupled Plasma Optical Emission

* Calculated Na content in sample A - Na_xMnO_2 is $Na_{0.354}MnO_2$; B - Na_xMnO_2 is $Na_{0.346}MnO_2$ and C - Na_xMnO_2 is $Na_{0.354}MnO_2$ giving an average Na content in the compound of $Na_{0.35}MnO_2$.

2. Powder X-ray diffraction analysis

A pattern of an empty, 0.7 mm in diameter, glass capillary was collected first. The powder was placed into the same capillary for the data collection. Both patterns were collected for 25 hours with continuously moving detector. The data were recorded with the step size 0.0167° in 20.

Fig. S1. X-ray diffraction patterns of empty capillary (blue) and the same capillary filled with $Na_{0.35}MnO_2$ (red)

In the course of refinement the pattern from empty capillary was added to the profile calculated using the equation of Debye.

3. Brunauer – Emmett – Teller characterisation

The surface area of $Na_{0.35}MnO_2$ was found to be 15 m²/g (Table S2 and Figure S2). $Na_{0.35}MnO_2$ is therefore a 2D ordered material with low porosity, whereby the capacitance is entirely pseudocapacitive.

Table S2. Surface area and pore volume of $Na_{0.35}MnO_2$.

Material	Surface area	Mesopores	Micropores
	(m ² g ⁻¹)	volume (cc g ⁻¹)	volumes (cc g ⁻¹)
As-prepared Na _{0.35} MnO ₂	15	0.0593	0.00017

Fig. S2. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution curves of $Na_{0.35}MnO_2$.

4. Transmission electron microscopy and Raman spectroscopy

Fig. S3. (**a-b**) HRTEM images of the as-prepared $Na_{0.35}MnO_2$ after exposure to electron beam under high magnification (x800 k) show the transformation to Mn_3O_4 hausmannite phase; (**c**) selected area electron diffraction (SAED) pattern; (**d**) Raman spectra of $Na_{0.35}MnO_2$ before and after exposure to the electron beam.

Table S3. Comparison of d-spacing of as-prepared $Na_{0.35}MnO_2$ after exposed to HRTEM electron beam to hausmannite-Mn₃O₄ JCPDS 75-1560 card from database.

	d-spacing calculated from	d-spacing hausmannite
	HRTEM images (nm)	Mn ₃ O ₄ database (nm)
Na _{0.35} MnO ₂		0.6159
	0.44	0.4070
		0.3645
		0.3395
	0.30	0.3079
	0.29	0.2929
		0.2877
	0.26	0.2607
		0.2377
	0.23	0.2355
	0.22	0.2258
	0.17	0.1697

5. Electrochemical characterisation

Fig. S4. (a, b) Cyclic voltammograms of $Na_{0.35}MnO_2$ measured at **(a)** 5 – 50 mV s⁻¹, **(b)** 100 – 1000 mV s⁻¹; **(c)** logaritmic plots of cathodic and anodic current of $Na_{0.35}MnO_2$ electrode versus scan rates between 5 – 1000 mV s⁻¹ in 0.5 M Na_2SO_4 (for sweep rates ranging from 5 to 1000 mV s⁻¹, the linear fitting *b*-value (slope) for both the cathodic (0.99) and anodic (0.98) average currents is close to 1 indicating that high rate capability is due to fast kinetics which is predominantly surface-controlled.¹)

6. X-ray absorption spectroscopy

Beamline B18 of Diamond Light Source. The Si(111) double crystal was used to monochromatise the X-ray photon energy. The samples were prepared into 13 mm pellets and measured in transmission mode. The XAS energy was calibrated using the first inflection point of Mn K-edge region of a metallic Mn foil (6539 eV) recorded simultaneously in each scan.

Manganese oxides with different oxidation states (MnO, Mn_3O_4 , Mn_2O_3 and MnO_2 from Sigma-Aldrich without any further treatment) are used as standard materials to create a quasilinear relationship between Mn K-edge energy and Mn oxidation state.

Sample	Mn K-edge Energy [eV]	Mn Oxidation state	Reference				
	Standard samples						
MnO	6544.21	2					
Mn_3O_4	6547.08	2.67	\mathbf{D}^{2} -0.000(
Mn_2O_3	6548.42	3	R ² =0.9996				
MnO ₂	6552.34	4					
	Na-doped MnO _x Samples						
As-prepared Na _{0.35} MnO ₂	6550.52	3.57					
Na _{0.35} MnO ₂ after 100 cycles	6550.37	3.54	This work				
Na _{0.35} MnO ₂ after 1200 cycles	6550.02	3.45					
	Literature						
MnO	6544.7	2					
Mn_2O_3	6548.2	3	6				
MnO ₂	6552.6	4					
MnO	~6545.75	2					
Mn_2O_3	~6547.75	3	7				
LiMn ₂ O ₄	~6548.75	3.5	/				
MnO ₂	~6549.75	4					

Table S4. The Mn oxidation state of manganese oxides

Fig. S5. The X-ray absorption near-edge structure (XANES) spectra of Na_{0.35}MnO₂.

7. References

- 1 V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon and B. Dunn, *Nat. Mater.*, 2013, **12**, 518-522.
- 2 C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach and J. P. Pereira-Ramos, *Solid State Ion.*, 2003, **159**, 345-356.
- 3 D. Chen, D. Ding, X. Li, G. H. Waller, X. Xiong, M. A. El-Sayed and M. Liu, *Chem. Mater.*, 2015, **27**, 6608-6619.
- 4 Y. K. Hsu, Y. C. Chen, Y. G. Lin, L. C. Chen and K. H. Chen, *Chem. Commun.*, 2011, **47**, 1252-1254.
- 5 Z. Su, C. Yang, B. Xie, Z. Lin, Z. Zhang, J. Liu, B. Li, F. Kang and C. P. Wong, *Energy Environ. Sci.*, 2014, 7, 2652-2659.
- 6 J. K. Chang, M. T. Lee and W. T. Tsai, J. Power Sources, 2007, 166, 590-594.
- 7 K. W. Kim, M. G. Kim and K. B. Kim, J. Phys. Chem. C., 2007, 111, 749-758.