Electronic Supplementary Information

Novel biomolecule-assisted interlayer anion-controlled layered double hydroxide as an efficient sorbent for arsenate removal

Paulmanickam Koilraja, Keiko Sasakia,*, Kannan Srinivasanb

aDepartment of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan

bInorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), GB Marg, Bhavnagar-364 002, India.

*Corresponding Author

Prof. Dr. Keiko Sasaki

Department of Earth Resources Engineering

Faculty of Engineering

Kyushu University

Fukuoka 819-0395

Japan

Tel./Fax. +81 92 802 3338

Email: keikos@mine.kyushu-u.ac.jp

Author Information

Paulmanickam Koilraj - koilrajp@gmail.com; koilraj@mine.kyushu-u.ac.jp
Fig. S1. Change in the degree of crystallinity of MgAl-LDHs with synthesis temperature.

The degree of crystallinity was calculated by the addition of 20 wt.% SiO\textsubscript{2} by the internal standard method. The phase fraction of each component was calculated from the PXRD patterns highest intensity peak area of SiO\textsubscript{2} and LDH phases as shown in the following equation:1

\[
\text{Phase fraction of LDH (} F_{LDH} \text{)} = \frac{\text{Area of LDH}_{(100\%\text{ intensity peak})}}{\text{Area of LDH}_{(100\%\text{ intensity peak})} + \text{Area of standard}_{(100\%\text{ intensity peak})}}
\]

(i)

The degree of crystallinity of the samples were calculated by the following equation:2

\[
\text{Degree of Crystallinity (\%)} = F_{LDH} X \frac{F_{S\ (actual)}}{F_{S}} \left(\frac{1}{1 - F_{S\ (actual)}}\right) \times 100
\]

(ii)

Where, \(F_{LDH}\) and \(F_{s}\) are the phase fraction of LDH and standard respectively, and \(F_{s\ (actual)}\) is the originally added fraction of internal standard.

References

Fig. S2 LC-MS spectra of supernatants obtained after LDH synthesis at different temperatures.

Scheme S1. Thermal decomposition of amino acid during hydrothermal treatment at higher temperatures.\(^1\)

Reference

(a) 90 °C
(b) 100 °C
(c) 105 °C
(d) 110 °C
(e) 115 °C
(f) 120 °C
(g) 150 °C
(h)
Fig. S3 PXRD peak fitting of MgAl LDHs synthesized at various temperatures (a-g) and (h) all of the LDHs.

![PXRD peak fitting](image)

Fig. S4 FT-IR spectra of MgAl-LDHs synthesized at various temperatures.

![FT-IR spectra](image)

Fig. S5 SEM images of MgAl-LDHs synthesized at various temperatures (scale bar = 2 µm).

![SEM images](image)
Fig. S6 Nitrogen adsorption-desorption isotherms of MgAl-LDHs synthesized at various temperatures.

Fig. S7 Kinetic linear fittings of Ho’s pseudo-second order model.
Fig. S8 (a) PXRD patterns of (a) MgAl-LDH-100 and (b) MgAl-LDH-100 (2:1) after sorption of arsenate at different concentrations.

Fig. S9 The \(d_{003} \)-spacing of MgAl-LDH-100 and MgAl-LDH-100 (2:1) after sorption of arsenate at different concentrations.
Fig. S10 (a) FT-IR spectra of MgAl-LDH-100 (2:1) after sorption of arsenate at different concentrations (b) and their expanded regions.

Fig. S11 XPS survey spectra of MgAl-LDH-90 before and after adsorption of 2.0 mM arsenate.