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Fig. S1. Experimental and simulated XRD patterns of DUT-58 (a) in the range 

of 5 ~ 50° and (b) in the range of 10 ~ 50° with amplified simulated data.



Fig. S2 XPS spectra of (a) C 1s and (b) O 1s for Co9S8/NS-C-1.5 h.



Fig. S3 EDX pattern of the as-prepared Co9S8/NS-C-1.5 h.



Fig. S4 N2 sorption isotherms of DUT-58 (a) before and (b) after the 

confinement treatment. The insets are the corresponding pore size distributions 

for DUT-58 (a) before and (b) after the confinement of TAA. 

The decomposition formula of TAA during the thermal pyrolysis is: 

3 2 2 2 3 2 24 4               (1)CH CSNH H O H S NH CO H    



Fig. S5 N2 sorption isotherms of Co9S8/NS-C-1.5 h composite. The inset shows the 

corresponding pore size distribution. 



Fig. S6 SEM images of DUT-58 and Co9S8/NS-C-t. (a) DUT-58, (b, c) 

Co9S8/NS-C-1.5 h, (d) Co9S8/NS-C-0 h, (e) Co9S8/NS-C-1 h and (f) Co9S8/NS-

C-2 h.



Fig. S7 Raman spectra of Co9S8/NS-C-t composites.



Fig. S8 TG and the corresponding XRD patterns of Co9S8/NS-C-1.5 h.

To evaluate the amount of carbon in Co9S8/NS-C-1.5 h material, the 

thermogravimetric (TG) analysis for Co9S8/NS-C-1.5 h was carried out in air from 25 

to 900 °C, and the corresponding TG curve is shown in Fig. S8. The sample 

Co9S8/NS-C-1.5 h is very stable at temperatures below 200 °C. With increasing 

temperature, an obvious weight increase takes place from 268 °C to ~ 487 °C. This 

weight increase is mainly attributed to the partial oxidation of Co9S8 NPs to form 

CoSO4. Above 487 °C, the weight reduction is mainly due to the oxidation of CoSO4 

to Co3O4 and the removal of amorphous carbon from the composites. At higher than 

670 °C, graphitic carbon of the composite gradually disappeared. When the testing 

temperature is higher than 858 °C, the weight becomes constant and the product is 

confirmed to be Co3O4. During the whole measurement range, the total weight loss is 

about 19.16%. From this final weight loss value, we estimated that the amount of 

carbon in Co9S8/NS-C-1.5 h is about 12 wt %.



Fig. S9 CV curves of the Co9S8/NS-C composite electrodes. (a) Co9S8/NS-C-0 h, (b) 

Co9S8/NS-C-1 h and (c) Co9S8/NS-C-2 h at scan rates 5, 10, 20, 50 and 100 mV s-1.



Fig. S10 Galvanostatic charge/discharge curves of the Co9S8/NS-C electrodes. (a) 

Co9S8/NS-C-t at 1 A g-1. (b) Co9S8/NS-C-0 h, (c) Co9S8/NS-C-1 h and (d) Co9S8/NS-

C-2 h at different current densities.



Fig. S11 EIS Nyquist plots of Co9S8/NS-C-t electrodes. Inset: EIS Nyquist plots with 

zoomed data at the high frequency region.



Fig. S12 Ragone plots of Co9S8/NS-C-1.5 h and other related electrodes.

mailto:co9s8/NS10@C-700-1.5h


Fig. S13 The cycling performance at the current density of 10 A g-1 of Co9S8/NS-C-t 

electrodes.



Fig. S14 (a) CV curves and (b) Galvanostatic charge/discharge curves of the AC 

electrode.



Fig. S15 Cyclic voltammograms of optimized Co9S8/NS-C-1.5h//AC asymmetric 

hybrid supercapacitor at different potential windows at a scan rate of 10 mV s-1.



Fig. S16 Ragone plots of Co9S8/NS-C-1.5h//AC and other related asymmetric 

hybrid supercapacitors.



Fig. S17 EIS Nyquist plot of Co9S8/NS-C-1.5h//AC asymmetric hybrid 

supercapacitor. (The inset shows EIS Nyquist plot with zoomed data at the high 

frequency region).



Table S1 Comparison of various Co9S8-based electrodes and asymmetric hybrid 

supercapacitor (AHS) in recent years as supercapacitors.

Electrode Electrolyte Stability Specific capacitances Rate 

capability

Refs

Co9S8/NS-C

Co9S8/NS-C-1.5h//AC

6.0 M 

KOH

140000 

cycles 

99.8%

2000 

cycles 

99.5%

734.09 F g-1@1 A g-1

653.64 F g-1@10 A g-1

75.6 F g-1@1 A g-1

32.41 F g-1@10 A g-1 

(AHS)

89 %

42.87%

This 

work

Co9S8@

Ni(OH)2

2.0 M 

KOH

2000 

cycles 

100% 

1620 F g-1@0.5 A g-1

1227 F g-1@20 A g-1

75.78 % 1

Co9S8/NF 2.0 M 

KOH

2000 

cycles 

94.4% 

1645 F g-1@3 A g-1

1309 F g-1@45 A g-1

80 % 2

Co9S8 3.0 M 

KOH

2000 

cycles 

91.4% 

1775 F g-1@4 A g-1

1483 F g-1@24 A g-1

83.5 % 3

Co9S8 6.0 M 

KOH

60 cycles

100% 

306.1 F g-1@0.1 A g-1

224 F g-1@1 A g-1

73.2 % 4

Co9S8

AC//Co9S8

2.0 M 

KOH

1500 

cycles

100%

2000 

cycles

100%

520 F g-1@0.5 A g-1

291.2 F g-1@8 A g-1

55 F g-1@0.5 A g-1

44 F g-1@5 A g-1 (AHS)

56 %

80 %
5

Co9S8@S,N-doped 

carbon cuboid

6.0 M 

KOH

2000 

cycles 

98%

429 F g-1@1 A g-1

336 F g-1@50 A g-1

78.32 % 6

C@Co9S8 2.0 M 

KOH

3000 

cycles 

88.5%

654 F g-1@2 A g-1

491 F g-1@8 A g-1

75.08 % 7

Co9S8 6.0 M 

KOH

1000 

cycles 

90.4% 

273.7 F g-1@1 A g-1 8

Co9S8 

nanoflakes//AC

30% 

KOH

5000 

cycles

90%

82.9 F g-1@1.25 A g-1

73.92F g-1@5 A g-1 

(AHS)

89% 9
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