Supporting Information

Iodine-doped ZnO Nanopillar Arrays for Planar Perovskite Solar Cells with High-Efficiency up to 18.24%

Yan-Zhen Zheng\(^{a,b,*}\), Er-Fei Zhao\(^{a}\), Fan-Li Meng\(^{a}\), Xue-Sen Lai\(^{a}\), Xue-Mei Dong\(^{a}\), Jiao-Jiao Wu\(^{a}\), and Xia Tao\(^{a,*}\)

\(^{a}\)State Key Laboratory of Organic-Inorganic Composites

Beijing University of Chemical Technology

15 Beisanhuan East Road, Beijing, 100029, P. R. China

*E-mail: zhengyz@mail.buct.edu.cn, taoxia@yahoo.com

\(^{b}\)Research Center of the Ministry of Education for High Gravity Engineering & Technology, Beijing University of Chemical Technology

15 Beisanhuan East Road, Beijing, 100029, P. R. China
Fig. S1 Cross-sectional SEM image of ZnO NR film hydrothermally grown for 2 h.
Fig. S2 Surface potential mapping of Au reference.

The work function of the ZnO NR and ZnO:I nanopillar films is measured by KPFM though probing the contact potential difference (CPD) between Antimony(n) doped Si tip and the samples. The \(WF_{\text{sample}} \) is defined as the following equation:

\[
WF_{\text{Sample}} = WF_{\text{tip}} - eV_{\text{CPD}}
\]

where \(e \) is the elementary charge of electron, \(WF_{\text{tip}} \) is the work function of Antimony(n) doped Si tip, and \(WF_{\text{sample}} \) is the work function of sample surface. The 1.5 × 1.5 \(\mu \text{m}^2 \) scan area is measured on Au, ZnO NR and ZnO:I nanopillar films, and the mean distribution of surface potential is employed as \(V_{\text{CPD}} \). The constant work function of Au is 5.10 eV. The \(V_{\text{CPD}} \) between Antimony(n) doped Si tip and the Au, ZnO NR and ZnO:I nanopillar films are –762 mV, –449 mV and –368 mV, respectively, as shown in Fig. 4. Therefore, the work function of the ZnO NR and ZnO:I nanopillar are 4.79 and 4.71 eV, respectively.
Fig. S3 Cross-sectional SEM images of perovskite deposition on the ZnO:I nanopillar (a) and ZnO NR (b) ETLs using one-step spin-coating process.

Table S1 Comprehensive comparison of 1D ETL structure, photovoltaic performance, perovskite processing method together with perovskite coverage between our work and other reported 1D ETL based PSCs.

<table>
<thead>
<tr>
<th>1D ETL</th>
<th>Length (nm)</th>
<th>Diameter (nm)</th>
<th>PCE (%)</th>
<th>Perovskite processing method</th>
<th>Perovskite coverage</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO:I nanopillar</td>
<td>450</td>
<td>~169</td>
<td>18.2</td>
<td>One-step</td>
<td>Complete</td>
<td>Our work</td>
</tr>
<tr>
<td>N:ZnO NRs</td>
<td>1071</td>
<td>~35</td>
<td>16.12</td>
<td>Two-step</td>
<td>Complete</td>
<td>14</td>
</tr>
<tr>
<td>ZnO NRs</td>
<td>1000</td>
<td>~80</td>
<td>11.13</td>
<td>Two-step</td>
<td>Incomplete</td>
<td>15</td>
</tr>
<tr>
<td>ZnO NRs</td>
<td>600</td>
<td>~60</td>
<td>14.35</td>
<td>Two-step</td>
<td>Complete</td>
<td>16</td>
</tr>
<tr>
<td>ZnO NRs</td>
<td>600</td>
<td>~50</td>
<td>5</td>
<td>One-step</td>
<td>Incomplete</td>
<td>17</td>
</tr>
<tr>
<td>TiO\textsubscript{2} NRs</td>
<td>560</td>
<td>~80</td>
<td>9.4</td>
<td>One-step</td>
<td>Incomplete</td>
<td>18</td>
</tr>
</tbody>
</table>
Fig. S4 XRD patterns of CH$_3$NH$_3$PbI$_3$ films deposited on ZnO NR ETL/ITO, and ZnO:I nanopillar ETL/ITO substrates, respectively.
Table S2 Photovoltaic parameters of a batch of 30 devices with ZnO NR as ETLs measured under AM 1.5G illumination at 100 mW cm$^{-2}$ using reverse scan direction with a scan rate of 0.2 V s$^{-1}$.

<table>
<thead>
<tr>
<th>Cell</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.07</td>
<td>18.04</td>
<td>55.89</td>
<td>10.79</td>
</tr>
<tr>
<td>2</td>
<td>1.03</td>
<td>15.76</td>
<td>53.46</td>
<td>8.68</td>
</tr>
<tr>
<td>3</td>
<td>1.07</td>
<td>17.16</td>
<td>55.82</td>
<td>10.25</td>
</tr>
<tr>
<td>4</td>
<td>1.08</td>
<td>17.95</td>
<td>55.42</td>
<td>10.74</td>
</tr>
<tr>
<td>5</td>
<td>1.05</td>
<td>17.79</td>
<td>55.67</td>
<td>10.40</td>
</tr>
<tr>
<td>6</td>
<td>1.05</td>
<td>16.06</td>
<td>53.21</td>
<td>8.97</td>
</tr>
<tr>
<td>7</td>
<td>1.06</td>
<td>17.94</td>
<td>55.56</td>
<td>10.57</td>
</tr>
<tr>
<td>8</td>
<td>1.01</td>
<td>16.45</td>
<td>52.02</td>
<td>8.64</td>
</tr>
<tr>
<td>9</td>
<td>1.04</td>
<td>17.31</td>
<td>53.00</td>
<td>9.54</td>
</tr>
<tr>
<td>10</td>
<td>1.02</td>
<td>17.54</td>
<td>54.78</td>
<td>9.80</td>
</tr>
<tr>
<td>11</td>
<td>1.00</td>
<td>16.4</td>
<td>51.01</td>
<td>8.37</td>
</tr>
<tr>
<td>12</td>
<td>1.09</td>
<td>17.21</td>
<td>56.14</td>
<td>10.53</td>
</tr>
<tr>
<td>13</td>
<td>1.05</td>
<td>17.97</td>
<td>55.14</td>
<td>10.40</td>
</tr>
<tr>
<td>14</td>
<td>1.02</td>
<td>17.86</td>
<td>54.71</td>
<td>9.97</td>
</tr>
<tr>
<td>15</td>
<td>1.00</td>
<td>16.47</td>
<td>50.15</td>
<td>8.26</td>
</tr>
<tr>
<td>16</td>
<td>1.02</td>
<td>16.06</td>
<td>54.95</td>
<td>9.00</td>
</tr>
<tr>
<td>17</td>
<td>1.05</td>
<td>17.86</td>
<td>55.65</td>
<td>10.44</td>
</tr>
<tr>
<td>18</td>
<td>1.04</td>
<td>17.03</td>
<td>55.06</td>
<td>9.75</td>
</tr>
<tr>
<td>19</td>
<td>1.03</td>
<td>17.53</td>
<td>54.51</td>
<td>9.84</td>
</tr>
<tr>
<td>20</td>
<td>1.02</td>
<td>16.82</td>
<td>54.11</td>
<td>9.28</td>
</tr>
<tr>
<td>21</td>
<td>1.07</td>
<td>17.61</td>
<td>55.57</td>
<td>10.47</td>
</tr>
<tr>
<td>22</td>
<td>1.02</td>
<td>16.27</td>
<td>53.13</td>
<td>8.82</td>
</tr>
<tr>
<td>23</td>
<td>1.03</td>
<td>17.22</td>
<td>55.38</td>
<td>9.82</td>
</tr>
<tr>
<td>24</td>
<td>1.05</td>
<td>18.02</td>
<td>54.31</td>
<td>10.28</td>
</tr>
<tr>
<td>25</td>
<td>1.05</td>
<td>17.80</td>
<td>55.74</td>
<td>10.42</td>
</tr>
<tr>
<td>26</td>
<td>1.04</td>
<td>17.64</td>
<td>54.68</td>
<td>10.03</td>
</tr>
<tr>
<td>27</td>
<td>1.02</td>
<td>17.10</td>
<td>55.41</td>
<td>9.66</td>
</tr>
<tr>
<td>28</td>
<td>1.01</td>
<td>16.46</td>
<td>52.26</td>
<td>8.69</td>
</tr>
<tr>
<td>29</td>
<td>1.03</td>
<td>16.83</td>
<td>54.10</td>
<td>9.38</td>
</tr>
<tr>
<td>30</td>
<td>1.02</td>
<td>17.98</td>
<td>55.01</td>
<td>10.09</td>
</tr>
</tbody>
</table>

Average 1.04±0.02 17.21±0.69 54.40±1.51 9.73±0.75
Table S3 Photovoltaic parameters of a batch of 30 devices with ZnO:I nanopillar as ETLs measured under AM 1.5G illumination at 100 mW cm\(^{-2}\) using reverse scan direction with a scan rate of 0.2 V s\(^{-1}\).

<table>
<thead>
<tr>
<th>Cell</th>
<th>(V_{oc}) (V)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.13</td>
<td>22.42</td>
<td>71.99</td>
<td>18.24</td>
</tr>
<tr>
<td>2</td>
<td>1.14</td>
<td>22.11</td>
<td>67.01</td>
<td>16.89</td>
</tr>
<tr>
<td>3</td>
<td>1.13</td>
<td>21.00</td>
<td>71.33</td>
<td>16.93</td>
</tr>
<tr>
<td>4</td>
<td>1.12</td>
<td>22.17</td>
<td>69.95</td>
<td>17.37</td>
</tr>
<tr>
<td>5</td>
<td>1.12</td>
<td>22.18</td>
<td>71.24</td>
<td>17.70</td>
</tr>
<tr>
<td>6</td>
<td>1.10</td>
<td>21.37</td>
<td>70.56</td>
<td>16.59</td>
</tr>
<tr>
<td>7</td>
<td>1.11</td>
<td>21.48</td>
<td>71.23</td>
<td>16.98</td>
</tr>
<tr>
<td>8</td>
<td>1.10</td>
<td>21.53</td>
<td>70.75</td>
<td>16.76</td>
</tr>
<tr>
<td>9</td>
<td>1.08</td>
<td>22.15</td>
<td>71.16</td>
<td>17.02</td>
</tr>
<tr>
<td>10</td>
<td>1.09</td>
<td>21.97</td>
<td>68.03</td>
<td>16.29</td>
</tr>
<tr>
<td>11</td>
<td>1.08</td>
<td>22.88</td>
<td>71.75</td>
<td>17.73</td>
</tr>
<tr>
<td>12</td>
<td>1.11</td>
<td>21.99</td>
<td>71.36</td>
<td>17.42</td>
</tr>
<tr>
<td>13</td>
<td>1.09</td>
<td>22.02</td>
<td>68.53</td>
<td>16.45</td>
</tr>
<tr>
<td>14</td>
<td>1.09</td>
<td>22.07</td>
<td>69.42</td>
<td>16.70</td>
</tr>
<tr>
<td>15</td>
<td>1.13</td>
<td>21.47</td>
<td>71.36</td>
<td>17.31</td>
</tr>
<tr>
<td>16</td>
<td>1.14</td>
<td>21.63</td>
<td>69.76</td>
<td>17.20</td>
</tr>
<tr>
<td>17</td>
<td>1.14</td>
<td>21.61</td>
<td>67.83</td>
<td>16.71</td>
</tr>
<tr>
<td>18</td>
<td>1.07</td>
<td>22.00</td>
<td>68.87</td>
<td>16.21</td>
</tr>
<tr>
<td>19</td>
<td>1.10</td>
<td>21.23</td>
<td>72.37</td>
<td>16.90</td>
</tr>
<tr>
<td>20</td>
<td>1.12</td>
<td>22.21</td>
<td>70.12</td>
<td>17.44</td>
</tr>
<tr>
<td>21</td>
<td>1.12</td>
<td>22.37</td>
<td>71.89</td>
<td>18.01</td>
</tr>
<tr>
<td>22</td>
<td>1.08</td>
<td>22.00</td>
<td>70.38</td>
<td>16.72</td>
</tr>
<tr>
<td>23</td>
<td>1.09</td>
<td>21.55</td>
<td>69.05</td>
<td>16.22</td>
</tr>
<tr>
<td>24</td>
<td>1.13</td>
<td>21.6</td>
<td>72.16</td>
<td>17.61</td>
</tr>
<tr>
<td>25</td>
<td>1.14</td>
<td>21.71</td>
<td>70.38</td>
<td>17.42</td>
</tr>
<tr>
<td>26</td>
<td>1.13</td>
<td>21.51</td>
<td>69.85</td>
<td>16.98</td>
</tr>
<tr>
<td>27</td>
<td>1.12</td>
<td>21.34</td>
<td>70.72</td>
<td>16.90</td>
</tr>
<tr>
<td>28</td>
<td>1.13</td>
<td>22.07</td>
<td>67.48</td>
<td>16.83</td>
</tr>
<tr>
<td>29</td>
<td>1.11</td>
<td>21.37</td>
<td>70.46</td>
<td>16.71</td>
</tr>
<tr>
<td>30</td>
<td>1.12</td>
<td>21.91</td>
<td>69.64</td>
<td>17.09</td>
</tr>
</tbody>
</table>

Average: 1.11±0.02 21.83±0.41 70.22±1.44 17.04±0.50
Fig. S5 UV-vis absorption spectra of CH$_3$NH$_3$PbI$_3$ films deposited on ZnO NR ETL/ITO, and ZnO:I nanopillar ETL/ITO substrates, respectively.
Fig. S6 Long term stability testing results for the unsealed PSC device based on ZnO:I nanopillar ETL.