Supporting Information

Co – Doped Porous Niobium Nitride Nanogrid as Effective Oxygen Reduction Catalyst

Haibo Tang, Xinlong Tian, Junming Luo, Jianhuang Zeng, Yingwei Li, Huiyu Song*, Shijun Liao*

The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy Technology of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
Fig. S1 shows the XRD patterns of the synthesized NbN and Nb$_{0.95}$M$_{0.05}$Ns. After the nitridation process, only the fcc Nb$_4$N$_5$ phase could be observed for all of the Nb$_{0.95}$M$_{0.05}$N, and the locations of the diffraction peaks were almost identical to those of NbN NPs. Furthermore, no signals corresponding to a single metallic phase or to the oxide or nitride phases of the doping elements were detected, suggesting that the Nb$_{0.95}$M$_{0.05}$N were formed as a highly pure, single-phase solid solution.

Using the Scherrer equation, we estimated the average particle sizes of the Nb$_{0.95}$M$_{0.05}$N to be 18.7, 19.8, 19.6, 17.5 and 20.2 nm for NbN, Nb$_{0.95}$Ni$_{0.05}$N, Nb$_{0.95}$Co$_{0.05}$N, Nb$_{0.95}$Cu$_{0.05}$N and Nb$_{0.95}$Zn$_{0.05}$N, respectively.

![Fig. S1 XRD pattern of Nb$_{0.95}$M$_{0.05}$N annealed at 750°C](image)

Fig. S1 XRD pattern of Nb$_{0.95}$M$_{0.05}$N annealed at 750°C

![Fig. S2](image)

Fig. S2 (a) XRD pattern and (b) TEM image of Nb$_{0.95}$Co$_{0.05}$N nanoparticle prepared by chemical
Fig. S3 Linear sweep voltammetry curves of Nb$_{0.95}$Co$_{0.05}$N nanoparticle and Nb$_{0.95}$Co$_{0.05}$N nanogrid, calculated by subtracting N$_2$-saturated solution from O$_2$-saturated solution at a rotation speed of 1600 rpm.

Fig. S4 CVs of (a) NbN, (b) Nb$_{0.95}$Co$_{0.05}$N, in N$_2$-saturated 0.1 M KOH solution at a scan rate of 50mV s$^{-1}$.
To well understand the mechanism of doping effect, we conducted O\textsubscript{2}-TPD tests for Nb\textsubscript{0.95}Co\textsubscript{0.05}N and NbN. As presented in Figure S6-a, both NbN and Nb\textsubscript{0.95}Co\textsubscript{0.05}N showed two strong desorption peaks in the same temperature areas. The left peaks of the two catalysts around 92 \degree C were almost coincidence, which corresponds to desorption of free oxygen. In comparison to NbN, the strong desorption peaks of Nb\textsubscript{0.95}Co\textsubscript{0.05}N around 300\degree C showed a slightly positive shift, indicating that doping with Co strengthened the adsorption of oxygen on the catalyst. And this is probably the reason for the enhanced performance. At a deeper level, the experiment results of O\textsubscript{2}-TPD might caused by the change of the electronic structures of Nb, which we have observed in XPS results. In addition, the XRD pattern of Nb\textsubscript{0.95}Co\textsubscript{0.05}N after the O\textsubscript{2}-TPD test (Figure S-6b) suggests that these peaks were not derived from the self-decomposition of Nb\textsubscript{0.95}Co\textsubscript{0.05}N.
Methanol tolerance properties of the Nb$_{0.95}$Co$_{0.05}$N were investigated using LSV measurements in the presence of 0.1 M methanol. As shown in Figure S7, Nb$_{0.95}$Co$_{0.05}$N exhibited little activity loss indicating an excellent tolerance to methanol.

Table S1 lists the compositions of several catalysts as measured by XPS. Clearly, the actual ratio of Co/Nb in Nb$_{0.95}$Co$_{0.05}$N is higher than the values obtained from ICP. This deviation suggests the surface enrichment of cobalt in Nb$_{0.95}$Co$_{0.05}$N nanogrid. The presence of O atoms is because the catalysts were exposed in the air for a while.
Table S1 The atomic compositions of NbN and Nb$_{0.95}$Co$_{0.05}$N

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>NbN</th>
<th>Nb${0.95}$Co${0.05}$N</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>42.62%</td>
<td>39.12%</td>
</tr>
<tr>
<td>N</td>
<td>28.76%</td>
<td>29.71%</td>
</tr>
<tr>
<td>Nb</td>
<td>28.62%</td>
<td>26.08%</td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td>5.08%</td>
</tr>
<tr>
<td>Co/Nb</td>
<td></td>
<td>19.48%</td>
</tr>
</tbody>
</table>

The theoretical value of Co/Nb is 5.3%