Supplementary Material

A cost-effective approach for practically viable Li-ion capacitors by using Li$_2$S as an in-situ Li-ion source material

Sheng S. Zhang

Electrochemistry Branch, RDRL-SED-C, Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1138, USA. Email: shengshui.zhang.civ@mail.mil; shengshui@gmail.com

Fig. S1. SEM images of (a) activated carbon, and (b) a 8 wt.% Li$_2$S-loaded activated carbon.
Fig. S2. Possible surface oxygen functionalities on activated carbon.1 (a) Phenolic hydroxyl group, (b) carboxylic group, (c) carboxylic acid anhydride group, (d) ether group, (e) cyclic peroxide group, (f) normal lactone group, (g) fluoresceintype lactone group, (h) quinone-type carbonyl group, (i) phenolic/quinone group with hydrogen bonding.

Fig. S3. S2p XPS spectrum of a 8 wt.% Li2S-loaded activated carbon electrode after initial activation by charging at 0.1 mA cm-2 to 4.2 V vs. Li/Li+.

Reference