Supporting Information

Fabrication of MOF-derived Heteroatom-doped Co/CoO/Carbon Hybrid with Superior Sodium Storage Performance for Sodium-ion Batteries

Yusuf Valentino Kaneti,1++ Jun Zhang,2,3+ Yan-Bing He,3,* Zhijie Wang,5 Shunsuke Tanaka,1,6 Md. Shahriar A. Hossain,1,6 Zheng-Ze Pan,3 Bin Xiang,5 Quan-Hong Yang,2,3,4* Yusuke Yamauchi1,6*

1 International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2 Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China.
3 Shenzhen Key Laboratory for Graphene-based Materials and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
4 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
5 Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
6 Australian Institute of Innovative Materials (AIIM), University of Wollongong, North Wollongong, New South Wales 2500, Australia.

+ Equally contributed to this work

E-mails:

KANETI.Valentino@nims.go.jp;
he.yanbing@sz.tsinghua.edu.cn;
qhyangcn@tju.edu.cn;
yusuke@uow.edu.au
Fig. S1. TGA curve of the Ni-doped Co/CoO/N-doped carbon (NC) carried out under air atmosphere at a heating rate of 10 °C·min⁻¹.