Supplementary information

Synergistic Effect of 2D Ti$_2$C and g-C$_3$N$_4$ for efficient photocatalytic hydrogen production

Mengmeng Shao,a Yangfan Shao,a,b Jianwei Chai,c Yuanju Qu,a,d Mingyang Yang,a,e Zeli Wang,f Ming Yang,e Weng Fai Ip,g Chi Tat Kwok,d,a Xingqiang Shi,b Zhanguang Lu,e Shijie Wang,c Xuesen Wang,f and Hui Pana*

a Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, P. R. China
b Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
c Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), Singapore
d Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China
e Shenzhen Key Laboratory of Hydrogen Energy, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
f Department of Physics, National University of Singapore, Singapore
g Chemistry Supporting Group, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China

* Corresponding Author: huipan@umac.mo; Tel: (853)88224427; Fax: (853)88222426
Fig. S1 XRD patterns of Ti$_2$C and Ti$_2$AlC.

Fig. S2 SEM images of (a) Ti$_2$AlC and (b) Ti$_2$C. EDX elemental mapping for (c) Ti$_2$AlC and (d) Ti$_2$C.
Fig. S3 (a) TG curves of g-C₃N₄ and TiCN and (b) the enlarged views of (a) in a range of 700-800 °C.

Fig. S4 XPS spectra of N 1s and O 1s for g-C₃N₄, TiCN-0.4 and TiCN-1.0.

Fig. S5 N₂ adsorption-desorption isotherms of g-C₃N₄, TiCN-0.1, TiCN-0.2, TiCN-0.4,
TiCN-0.8 and TiCN-1.0.

Fig. S6 Photocatalytic hydrogen production rates of g-C$_3$N$_4$, TiCN-0.4, TiCN-0.4-mixed (Ti$_2$C and g-C$_3$N$_4$ physical mixing), Ti$_2$AlC/g-C$_3$N$_4$-0.4 and no catalyst.

Fig. S7 Recycling studies of hydrogen production over g-C$_3$N$_4$ (a) and Ti$_2$C (b). The reaction system was purged with N$_2$ before every cycling.
Fig. S8 XRD patterns of TiCN-0.4 and after cycling 10 times.

Fig. S9 SEM images of TiCN-0.4: as prepared (a, b) and after cycling 10 times (c, d).
Fig. S10 EDS elemental mapping for TiCN-0.4: a) as prepared and b) after cycling 10 times; XPS spectra of O 1s for TiCN-0.4: as prepared and after cycling 10 times. Notes: the high percentage of Cu in the EDS mapping of TiCN-0.4 is attributed to the Cu substrate.
Fig. S11 UV-vis adsorption spectra of TiCN-0.4: as prepared and after cycling 10 times.
<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Amount of photocatalyst (mg)</th>
<th>Co-catalyst</th>
<th>Loading method</th>
<th>Optimum loading</th>
<th>Light source</th>
<th>Hydrogen production rate (μmol/h/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiCN-0.4</td>
<td>50</td>
<td>Ti₂C</td>
<td>Calcination</td>
<td>0.4 wt%</td>
<td>solar simulator AM 1.5</td>
<td>950</td>
<td>This work</td>
</tr>
<tr>
<td>Pt/g-C₃N₄</td>
<td>50</td>
<td>Pt</td>
<td>Adsorption-deposition</td>
<td>1 wt%</td>
<td>350 W Xe lamp</td>
<td>588</td>
<td>1</td>
</tr>
<tr>
<td>MoSₓ/g-C₃N₄</td>
<td>50</td>
<td>MoSₓ</td>
<td>Adsorption-in situ transformation</td>
<td>3 wt%</td>
<td>four low-power LEDs</td>
<td>273.1</td>
<td>2</td>
</tr>
<tr>
<td>CoP/g-C₃N₄</td>
<td>100</td>
<td>CoP</td>
<td>Grinding</td>
<td>0.25 wt%</td>
<td>300 W Xe lamp</td>
<td>474.4</td>
<td>3</td>
</tr>
<tr>
<td>Ni/g-C₃N₄</td>
<td>10</td>
<td>Ni</td>
<td>Photodeposition</td>
<td>7.4 wt%</td>
<td>300 W Xe lamp</td>
<td>4318</td>
<td>4</td>
</tr>
<tr>
<td>Cu/g-C₃N₄</td>
<td>50</td>
<td>Cu</td>
<td>Milling</td>
<td>3 wt%</td>
<td>Xe lamp</td>
<td>20.5</td>
<td>5</td>
</tr>
<tr>
<td>Ag₂S/g-C₃N₄</td>
<td>50</td>
<td>Ag₂S</td>
<td>Photodeposition</td>
<td>5 wt%</td>
<td>Four low power UV-LEDs</td>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>NiS/g-C₃N₄</td>
<td>100</td>
<td>NiS</td>
<td>Hydrothermal</td>
<td>1.1 wt%</td>
<td>300 W Xe lamp</td>
<td>482</td>
<td>7</td>
</tr>
<tr>
<td>Ni₂P/g-C₃N₄</td>
<td>20</td>
<td>Ni₂P</td>
<td>Hydrothermal</td>
<td>0.4 wt%</td>
<td>300 W Xe lamp</td>
<td>183.6</td>
<td>8</td>
</tr>
<tr>
<td>WS₂/g-C₃N₄</td>
<td>50</td>
<td>WS₂</td>
<td>Impregnation-sulfidation</td>
<td>0.3 wt%</td>
<td>300 W Xe lamp</td>
<td>240</td>
<td>9</td>
</tr>
<tr>
<td>Graphene/g-C₃N₄</td>
<td>80</td>
<td>Graphene</td>
<td>Impregnation-chemical reduction</td>
<td>1.0 wt%</td>
<td>350 W Xe lamp</td>
<td>451</td>
<td>10</td>
</tr>
<tr>
<td>Carbon nanotubes/g-C₃N₄</td>
<td>100</td>
<td>Carbon nanotubes</td>
<td>Heat treatment</td>
<td>0.5 wt%</td>
<td>300 W Xe lamp</td>
<td>42</td>
<td>11</td>
</tr>
</tbody>
</table>
Computational method

The density functional theory (DFT) calculations were performed by using the Vienna ab initio simulation package (VASP).12,13 To describe the valence and core states, plane wave basis set and projector augmented wave (PAW) potentials were employed with a kinetic energy cutoff of 500 eV.14 The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) exchange and correlation functional was used.15 For structure relaxation, both lattice constants and atom coordinates were optimized until the forces converged to less than 0.02 eV/Å. The Monkhorsk-Pack k-point sampling of g-C\textsubscript{3}N\textsubscript{4} and Ti\textsubscript{2}C were 5 × 5 and 15 × 15, respectively. For density of states (DOS) calculations, Gaussian smearing was 0.05 eV and Monkhorsk-Pack k-point sampling of g-C\textsubscript{3}N\textsubscript{4} and Ti\textsubscript{2}C were 7 × 7 and 21 × 21. The vacuum layer was 20 Å in vertical direction.
Fig. S12 The structural models of Ti$_2$AlC, Ti$_2$C and g-C$_3$N$_4$.
Fig. S13 The calculated band structure of (a) g-C$_3$N$_4$ and (c) TiCN; and the total density of states of (b) g-C$_3$N$_4$ and (d) TiCN.

References: