# Carbon dots anchored on octahedral CoO as a stable visible-light-

# responsive composite photocatalyst for overall water splitting

## **Supporting Information**

#### 1. Apparent quantum efficiency (AQE) calculations.

In the photocatalytic water splitting, the catalyst solution was irradiated by a 300W Xe lamp (XD-300, China) with  $420 \pm 20$  nm band-pass filter for 24 h. The light source possesses a focused intensity of about 2.80 mW/cm<sup>2</sup> (the irradiation intensity was determined by CEL-NP2000 spectroradiometer, Fig. S9) and the irradiation area is 4.27 cm<sup>2</sup>. The number of incident photons (N) was calculated to be  $2.18 \times 10^{21}$  by Equation S1.<sup>S1</sup> The amount of H<sub>2</sub> produced in 24 h for 5% CDs/CoO as photocatalysts was 19.23 µmol. The apparent quantum efficiency (AQE) of 5% CDs/ CoO was 1.02% as calculated by Equation S2.

$$N = \frac{E\lambda}{hc} = \frac{2.80 \times 10^{-3} \times 4.27 \times 24 \times 3600 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 2.18 \times 10^{21}$$

Equation S1

 $\frac{1}{2 \times the number of evolved H_2 molecules} \times 100\%$ AQE = the number of incident photons

Equation S2

$$=\frac{2 \times 19.23 \times 10^{-6} \times 6.02 \times 10^{23}}{2.18 \times 10^{21}} \times 100\% = 1.02\%$$

#### 2. Turnover number (TON) calculations.

Here is our current condition: We have 10 mg catalyst in 20 mL water. Converting this to moles, 10 mg of 5% CDs/CoO (since 5 wt.% by weight is CDs we have 9.5 mg of CoO). Take this and convert to micromoles to further calculate the TON.

9.5 mg CoO × (1 g/1000 mg) × (1 mol CoO/75 g CoO) × (10<sup>6</sup>  $\mu$ mol/1mol) = 127 umol CoO

Consequently, our TON would be >1 if the catalyst produced 63.5 µmol of O<sub>2</sub>. From the cumulative production experiment (Fig.S6b), the total amount of gaseous O<sub>2</sub> collected reached 216 µmol after 10 days. It can be therefore estimated that TON is approximately 3.4.

### 3. Additional Figures.

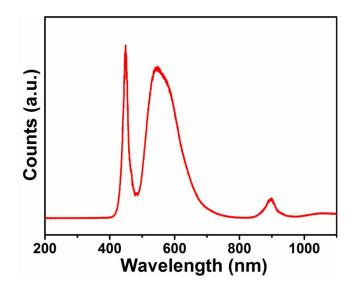



Fig.S1. The spectrum of the LED light source used for irradiation

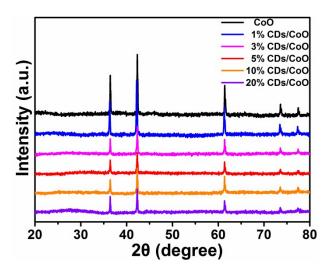



Fig.S2. XRD patterns of as-prepared samples.

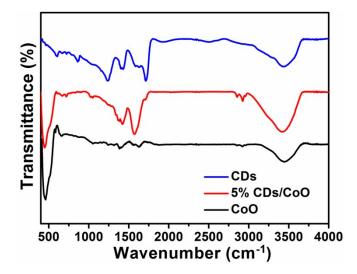



Fig.S3. FT-IR spectra of CDs, CoO and 5% CDs/CoO.

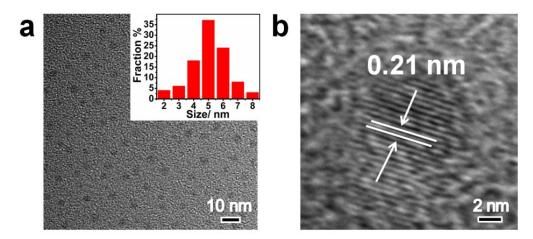



Fig.S4. (a) TEM (inset is size distribution of CDs) and (b) HRTEM images of CDs.

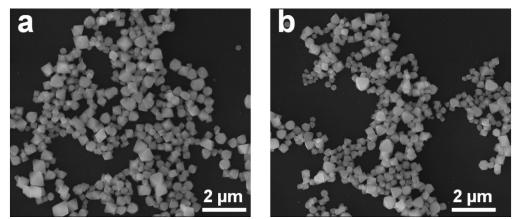



Fig.S5. SEM images of (a) octahedral CoO and 5% CDs/CoO composite.

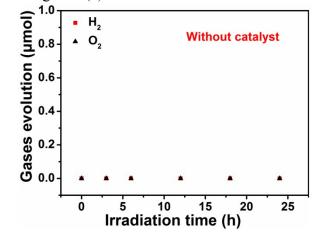
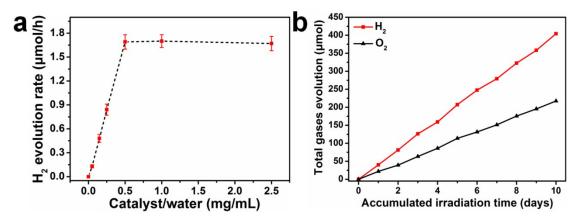




Fig.S6. The H<sub>2</sub>/O<sub>2</sub> evolutions from pure water without any catalysts under visible light irradiation ( $\lambda > 400$  nm).



**Fig.S7.** (a)  $H_2$  evolution rates for adding different amounts of catalyst in 20 mL of pure water. (b) The total  $H_2/O_2$  production from pure water with 5% CDs/CoO composite (10 mg, 20 mL pure water) under different accumulated irradiation time.

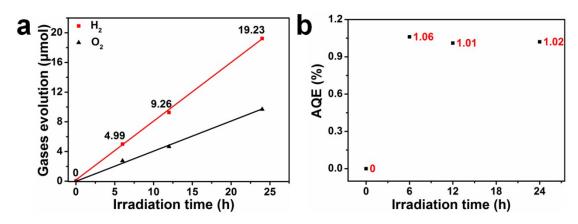
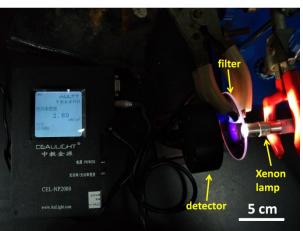




Fig.S8. (a) The  $H_2/O_2$  evolutions from pure water over 5% CDs/CoO under visible light irradiation (420 ± 20 nm, 2.80 mW/cm<sup>2</sup>). (b) The AQE of 5%



CDs/CoO under different irradiation time.

**Fig.S9.** The light power measurement of Xenon lamp (300 W) with a 420 nm bandpass filter. Irradiance intensity was determined as 2.80 mW cm<sup>-2</sup>.

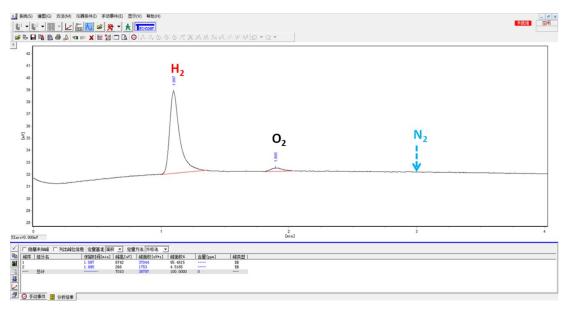
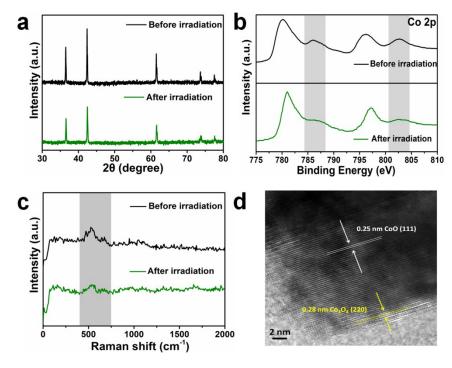




Fig.S10. A typical GC trace of evolved hydrogen and oxygen.



**Fig. S11.** (a) XRD patterns, (b) high-resolution Co 2p spectra and (c) Raman spectra of CoO before and after irradiation. (d) HRTEM image of CoO after irradiation.

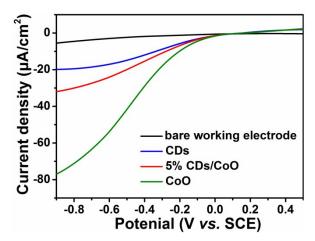



Fig.S12. LSV curves for CDs, 5% CDs/CoO, CoO, and the bare working electrode in  $20 \text{ mM H}_2\text{O}_2$  solution.

| Table S1. A   | summary of the photocatalytic-hydrogen-production apparent of | quantum |
|---------------|---------------------------------------------------------------|---------|
| efficiency (A | DE) of representative CD-based photocatalysts.                |         |

| Photocatalyst                        | Co-catalyst   | Sacrificial agents             | AQE (%)<br>at 420nm | Ref.      |
|--------------------------------------|---------------|--------------------------------|---------------------|-----------|
| CDs/CNNS                             | No            | Methanol (20 vol%)<br>solution | 0.136%              | Ref.S2    |
| CDs/ZnIn <sub>2</sub> S <sub>4</sub> | Pt (0.3 wt.%) | TEOA (10 vol%)<br>solution     | 0.2%                | Ref.S3    |
| CDs/BiVO <sub>4</sub> QDs            | No            | No                             | 0.63%               | Ref.S4    |
| CDs/CoO                              | No            | No                             | 1.02%               | This work |

References

- S1. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong and Z. Kang, *Science*, 2015, **347**, 970-974.
   S2. X. Y Xia, N. Deng, G. W. Cui, J. F. Xie, X. F. Shi, Y. Q. Zhao, Q. Wang, W. Wang and B. Tang, *Chem. Commun.* 2015, **51**, 10899-10902.
   C. C. L. M. Angerscheld, C. Yao, Chem. Asian J. 2014. **2**, 1755, 1770.
- S3. Q. Li, C. Cui, H. Meng, and J. G. Yu, *Chem. Asian J.* 2014, **9**, 1766–1770.
  S4. X. Q. Wu, J. Zhao, S. J. Guo, L. P. Wang, W. L. Shi, H. Huang, Y. Liu and Z. H. Kang, *Nanoscale* 2016, **8**, 17314-17321.