Supporting Information

For Journal of Materials Chemistry A

Compact High Volumetric and Areal Capacity Lithium Sulfur Battery through Rock Salt induced Polymodally Distributed Sulfur Host

Matthew Lia,ψ, Yining Zhang a,ψ, Fathy Hassana, Wook Ahnb, Xiaolei Wanga, Wen Wen Liua, Gaopeng Jianga, Zhongwei Chen a,*

a Waterloo Institute for Nanotechnology, Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada

b Department of Energy Systems Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do, 31538 Korea.

ψMatthew Li and Yining Zhang contributed equally to this work.

*Corresponding Author
E-mail: zhwchen@uwaterloo.ca
Supporting Figures:

Figure S 1: Zeta potential measurements displaying mobility plots with corresponding table of calculated Zeta potential of samples without (a) and with (b) NaCl. 6 runs were conducted for each sample to ensure repeatability.
Figure S 2: TEM image of Poly-NPC prior to silica removal indicating lighter and darker spots throughout its structure. Dotted circle marks a lighter spot.
Figure S 3: Dynamic light scattering particle size distribution of sample with and without rock salt.
Figure S 4: Thermogravimetric analysis curve indicating 70% sulfur content in Poly-NPC /sulfur composite
Figure S 5: Pore size distribution per: a) BJH desorption, b) DFT and adsorption and desorption curve of c) Poly-NPC and d) 0% NaCl-NPC.
Figure S 6: Diagram used to deduce the inter-silica pore size, the circles represent silica nanoparticle of diameter ~20 nm. Whereas the small solid circle in the center of the diagram represents the inter-silica pore. The triangle is drawn from the center point of each silica particle. The dotted triangle is drawn from the center of the inter-silica pore to the center of the top silica particle (length=x nm) and to the bottom left edge of the top silica particle (length=10 nm), forming a right angle triangle with inner 60° angles. In other words, the dotted triangle has a height of 10 nm and an unknown hypotenuse of x nm. Since the length of one side and inner angles are known, from simple trigonometry of right angle triangles, the unknown x is calculated to be 11.54. Since x is actually the sum of the radius of the inter-silica pore and the radius of a silica particle (~10 nm). Then the radius of the inter-silica pores can be calculated to be ~1.5 nm which would yield a diameter of ~3 nm, matching roughly the pore size distribution obtained from nitrogen sorption experiments.
Figure S 7: a) XPS binding energy spectrum of Poly-NPC with 14.9 at% of nitrogen and b) the full XPS scan proving the proportion of nitrogen in carbon material.

Figure S 8: Cycle performance at 0.5 C over 100 cycles of 0% NaCl sample with 70% S
Figure S 9: a) Cyclic voltammetry of 4 mg cm$^{-2}$ cell at 0.1 mV s$^{-1}$ and b) corresponding charge/discharge voltage profile of 4 mg cm$^{-2}$ cell.

Supporting Tables:

Table S 1: Performance summary of recent blade casted lithium sulfur electrodes

<table>
<thead>
<tr>
<th>Title/Year</th>
<th>Traditional Battery Manufacturing</th>
<th>Sulfur Loading (%wt of cathode coating)</th>
<th>Areal Capacity</th>
<th>Thickness</th>
<th>Electrode’s Volumetric Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes/2015</td>
<td>Yes</td>
<td>3.5 mg cm$^{-2}$ (64%)</td>
<td>3.5 mAh cm$^{-2}$</td>
<td>80 μm</td>
<td>339 mAh cm$^{-3}$</td>
</tr>
<tr>
<td>Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption/2016</td>
<td>Yes</td>
<td>5 mg cm$^{-2}$ (56.25%)</td>
<td>4.27 mAh cm$^{-2}$</td>
<td>150 μm</td>
<td>284 mAh cm$^{-3}$</td>
</tr>
<tr>
<td>A Comprehensive Approach toward Stable Lithium-Sulfur Batteries with High Volumetric Energy Density /2016</td>
<td>Yes</td>
<td>5.1 mg cm$^{-2}$ (65.45%)</td>
<td>5 mAh cm$^{-2}$</td>
<td>215 μm</td>
<td>239 mAh cm$^{-3}$</td>
</tr>
<tr>
<td>Investigation of non-woven carbon paper as a current collector for sulfur positive electrode—Understanding of the mechanism and potential applications for Li/S batteries/2016</td>
<td>Yes</td>
<td>4.4 mg cm$^{-2}$ (80%)</td>
<td>4.96 mAh cm$^{-2}$</td>
<td>270 μm</td>
<td>183 mAh cm$^{-3}$</td>
</tr>
<tr>
<td>Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries/2014</td>
<td>Yes</td>
<td>3.72 mg cm$^{-2}$ (45%)</td>
<td>3.21 mAh cm$^{-2}$</td>
<td>215 μm</td>
<td>149 mAh cm$^{-3}$</td>
</tr>
<tr>
<td>This work</td>
<td>Yes</td>
<td>4 mg cm$^{-2}$ (60.9%)</td>
<td>5.4 mAh cm$^{-2}$</td>
<td>109 μm</td>
<td>495 mAh cm$^{-3}$</td>
</tr>
</tbody>
</table>
Reference