Supporting Information

Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability

Xin Du,* Caixia Zhao, Yi Luan,* Changbin Zhang, Mietek Jaroniec, Hongwei Huang, Xueji Zhang, and Shi-Zhang Qiao*

Dr. X. Du, C. Zhao, Prof. Y. Luan, Prof. X. Zhang
Research Center for Bioengineering and Sensing Technology,
School of Chemistry & Biological Engineering,
Beijing Key Laboratory for Bioengineering and Sensing Technology,
University of Science & Technology Beijing, Beijing 100083, P. R. China
E-mail: duxin@ustb.edu.cn, yiluan@ustb.edu.cn

Dr. X. Du, Prof. S. Z. Qiao
School of Chemical Engineering,
The University of Adelaide, Adelaide, SA 5005, Australia
E-mail: s.qiao@adelaide.edu.au

Prof. C. Zhang
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, Beijing 100085, China

Prof. M. Jaroniec
Department of Chemistry and Biochemistry,
Kent State University, Kent, Ohio 44242, USA

Dr. H. Huang
School of Materials Science and Technology,
China University of Geosciences, Beijing 100083, China
Table S1. Comparison of the turnover frequency (TOF) of various Au-loaded nanocatalysts for the reduction of 4-NP.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>4-NP (μmol)</th>
<th>Time (min)</th>
<th>Au content (μmol)</th>
<th>TOFa (min$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au@meso-SiO$_2$ hollow nanospheres</td>
<td>0.0625</td>
<td>20</td>
<td>-</td>
<td>ca. 0.08</td>
<td>1</td>
</tr>
<tr>
<td>Au(21 nm)@HMSM yolk-shell catalyst</td>
<td>0.2</td>
<td>30</td>
<td>-</td>
<td>ca. 0.63</td>
<td>2</td>
</tr>
<tr>
<td>Au@[Na]-HMAS</td>
<td>30</td>
<td>12</td>
<td>-</td>
<td>ca. 1.1</td>
<td>3</td>
</tr>
<tr>
<td>Au@hollow-SiO$_2$@PSS catalyst</td>
<td>0.06</td>
<td>16</td>
<td>3*10$^{-3}$</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>Yolk-shell SiO$_2$@Au/PEGDMA</td>
<td>0.1</td>
<td>50</td>
<td>0.92*10$^{-3}$</td>
<td>2.2</td>
<td>5</td>
</tr>
<tr>
<td>Au@hollow SiO$_2$</td>
<td>0.24</td>
<td>25</td>
<td>0.2</td>
<td>0.05</td>
<td>6</td>
</tr>
<tr>
<td>Au NPs/silica nanotubes</td>
<td>3.6</td>
<td>14/3</td>
<td>0.934</td>
<td>0.826</td>
<td>7</td>
</tr>
<tr>
<td>Hollow tubular SiO$_2$-Au</td>
<td>0.3</td>
<td>6</td>
<td>6.09*10$^{-2}$</td>
<td>0.82</td>
<td>8</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@SiO$_2$-Au@mSiO$_2$</td>
<td>0.5</td>
<td>15</td>
<td>3.4*10$^{-1}$</td>
<td>0.1</td>
<td>9</td>
</tr>
<tr>
<td>Double-shell TiO$_2$/SiO$_2$-Au</td>
<td>0.3</td>
<td>9</td>
<td>2.66*10$^{-2}$</td>
<td>1.25</td>
<td>10</td>
</tr>
<tr>
<td>Au(5 nm)-γ-Fe$_3$O$_4$</td>
<td>8</td>
<td>2</td>
<td>1.52</td>
<td>2.6</td>
<td>11</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@Au-TiO$_2$/ZrO$_2$</td>
<td>34</td>
<td>6</td>
<td>1.59</td>
<td>3.56</td>
<td>12</td>
</tr>
<tr>
<td>hollow porous gold nanoparticles</td>
<td>0.3</td>
<td>9</td>
<td>2.14*10$^{-2}$</td>
<td>1.56</td>
<td>13</td>
</tr>
<tr>
<td>Yolk-shell Au@Fe$_3$O$_4$</td>
<td>0.4</td>
<td>5/3</td>
<td><0.1015</td>
<td>>2.36</td>
<td>14</td>
</tr>
<tr>
<td>Au-GO hybrid</td>
<td>0.2</td>
<td>6</td>
<td>3*10$^{-2}$</td>
<td>1.11</td>
<td>15</td>
</tr>
<tr>
<td>Au@C yolk-shell</td>
<td>0.025</td>
<td>10</td>
<td>-</td>
<td>ca. 0.0025</td>
<td>16</td>
</tr>
<tr>
<td>PDA-Au/graphene</td>
<td>1.0</td>
<td>13</td>
<td>0.2</td>
<td>0.38</td>
<td>17</td>
</tr>
<tr>
<td>Au@hollow graphene nanoshell</td>
<td>100</td>
<td>3</td>
<td>30</td>
<td>1.12</td>
<td>18</td>
</tr>
<tr>
<td>Au NPs/polyacrylonitrile</td>
<td>86.5</td>
<td>210</td>
<td>-</td>
<td>1.42</td>
<td>19</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@PDA-Au</td>
<td>0.85</td>
<td>19</td>
<td>1.09*10$^{-2}$</td>
<td>4.1</td>
<td>20</td>
</tr>
<tr>
<td>Poly(DVB-co-AA)@Au</td>
<td>39.1</td>
<td>72</td>
<td>0.147</td>
<td>3.7</td>
<td>21</td>
</tr>
<tr>
<td>DPSSs@Au NPs@MSS (35 nm)</td>
<td>2.5</td>
<td>8</td>
<td>8.63*10$^{-2}$</td>
<td>3.62</td>
<td>This work</td>
</tr>
</tbody>
</table>

a Calculated by the moles of the reduced 4-NP/the mole of Au content/the consumed time.
Supplementary Results

Fig. S1. SEM (a,b) and TEM (c,d) images of DPSSs. (e) \(\text{N}_2 \) sorption isotherm measured on the synthesized DPSSs and (f) the corresponding pore size distribution curve determined by using the Quenched Solid Density Functional Theory (QSDFT) method using nitrogen adsorption data.

DPSSs have the high BET surface area of 282 m\(^2\)·g\(^{-1}\) and total pore volume of 0.93 cm\(^3\)·g\(^{-1}\). The corresponding pore size distribution curve shows several peaks (Fig. S1f), which further validates the wide pore size distribution of DPSSs.
Fig. S2. SEM image of DPSSs and distribution histogram of pore sizes of DPSSs particle surface.

It should be noted that the center-radial large pores, which are composed of wrinkled nanosheets, are irregular slit-like pores with wide surface pore size distribution of 57 ± 31 nm.
Fig. S3. Zeta potentials of DPSSs (−25.5 mV), DPSSs-NH₂ (+34.5 mV), and DPSSs-NH₂@Au NPs (+19.1 mV) dispersed in water at room temperature, which were measured by using dynamic light scattering.
Fig. S4. SEM (a,b) and TEM (c-f) images of DPSSs-NH$_2$@Au NPs.
Fig. S5. SEM (a,d,g) and TEM (b,c,e,f,h,i) images of DPSSs-NH$_2$@Au NPs@RF with tunable RF layer thickness.
Fig. S6. SEM (a,b) and TEM (c-f) images of DPSSs-NH$_2$@Au NPs@RF@MSS.

MSS has a uniform thickness size.
Fig. S7. Digital pictures of DPSSs-NH$_2$@Au NPs@RF@MSS (a), DPSSs@Au NPs@MSS (b), DPSSs-NH$_2$@Pt NPs@RF@MSS (c) and DPSSs@Pt NPs@MSS (d).

After calcination, the light red color of DPSSs@Au NPs@MSS product suggests small size of Au NPs, and the gray color DPSSs@Pt NPs@MSS product indicates the formation of nanosized Pt NPs.[1]
Fig. S8. TGA curve of DPSSs-NH$_2$@Au NPs@RF (shell thickness: ca. 45 nm)@MSS at a heating rate of 10 °C·min$^{-1}$ under a flow of air gas.
Fig. S9. FTIR spectra of DPSSs@Au NPs@MSS and DPSSs@Pt NPs@MSS obtained after calcinations at 550 °C for 6 h.
Fig. S10. TEM images of DPSSs@Au NPs@MSS with a shell thickness of ca. 95 nm.
Fig. S11. Schematic illustration of thermally-induced aggregation of Au NPs encapsulated in hollow cavity. TEM images of samples before and after thermal treatment: (A) yolk-shell Au NPs@hollow silica nanospheres (HSNs),[22] (B) core–shell Au@RF@meso-SiO$_2$ nanospheres,[1] (C) Au NPs@PS-co-P4VP@hollow mesoporous silica nanospheres (HMSNs),[2] (D) Au NPs@PS-co-P4VP@HSNs[4] and (E) yolk-shel silica nanospheres containing HAuCl$_4$.[23] Reprinted with permission from Ref. [1,2,4,22,23]. Copyright 2014 Elsevier,[1] Copyright 2011 American Chemical Society,[2] Copyright 2017 Elsevier,[4] Copyright 2012[22] and 2011[23] Wiley-VCH.
Fig. S12. Schematic illustration and TEM images of integrated nanostructures of dendritic porous yolk@noble metal NPs@MSS efficiently suppressing Ostwald ripening aggregation of noble metal NPs under high temperature.
Fig. S13. TEM images of DPSSs@Au NPs after calcination of DPSSs-NH$_2$@Au NPs at 550 °C for 6 h.
Fig. S14. TEM images of DPSSs@Au NPs after calcination of DPSSs-NH$_2$@Au NPs at 650 °C for 6 h.
Fig. S15. (a) Deprotonation of 4-NP after addition of NaBH₄ solution and its subsequent catalytic reduction after addition of DPSS@Au NPs@MSS with a shell thickness of ca. 35 nm. (b) UV-vis spectra of 4-NP before and after addition of NaBH₄. (c) Time-dependent absorption spectra of the reaction solution.
Fig. S16. TEM images of DPSSs@Au NPs@MSS after 10 repeated catalytic tests.
Fig. S17. UV-vis absorption spectra of DPSSs-NH$_2$@Au NPs (a), DPSSs @Au NPs (after calcination at 550 °C for 6 h) and DPSSs@Au NPs@MSS with a shell thickness of ca. 35 nm (b) suspensions before and after treatment with HCl solution (pH = 2) for 20 min.
Fig. S18. Proposed mechanism for the styrene epoxidation. The kinetic styrene oxide product can be further converted to be thermodynamic benzaldehyde product.
Reference:

