Supporting Information

MOF derived ZnCo$_2$O$_4$ porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode

Won-Tae Koo, Hye-Yeon Jang, Chanhoon Kim, Ji-Won Jung, Jun Young Cheong, and Il-Doo Kim*

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

*E-mail: idkim@kaist.ac.kr

Table of Contents
- Fig. S1 Thermogravimetric analysis of BM-ZIF_PS.
- Fig. S2 SEM and STEM image, and SAED patterns
- Fig. S3 TEM analyses of ZnCo$_2$O$_4$@Ag HSs obtained from high and low amounts of AgNO$_3$.
- Fig. S4 SEM images of BM-ZIFs and ZnCo$_2$O$_4$ NPs, and XPS analysis of ZnCo$_2$O$_4$ NPs
- Fig. S5 CV curves of ZnCo$_2$O$_4$ NPs, ZnCo$_2$O$_4$ HSs, and ZnCo$_2$O$_4$@Ag HSs.
- Fig. S6 High resolution XPS analysis spectrum of Ag 3d for ZnCo$_2$O$_4$@Ag HSs.
- Fig. S7 The first galvanostatic cycle discharge/charge voltage profiles of the samples.
- Fig. S8 Ex-situ SEM images of the surface of the samples.
- Fig. S9 Schematic illustration of equivalent circuit model.
- Fig. S10 Nyquist plots of the samples before cycling.
- Table S1 Capacity values at high current densities of 10 A g$^{-1}$, 15 A g$^{-1}$, and 20 A g$^{-1}$.
- Table S2 Performance of representative ZnCo$_2$O$_4$ anode materials for Li-ion batteries.
- Table S3 Fitted electrochemical impedance component values of the samples.
- References
Fig. S1 TG and DTG curves of BM-ZIF_PS in the temperature range of 50–750 °C under air atmosphere.
Fig. S2 (a) SEM image of ZnCo$_2$O$_4$ HSs, (b) STEM image of ZnCo$_2$O$_4$@Ag HSs, and (c) SAED patterns of ZnCo$_2$O$_4$@Ag HSs.
Fig. S3 TEM analyses of ZnCo$_2$O$_4$@Ag HSs \textit{via} Ag-mirror reaction using 1.7 mM (a-d) and 15 mM (e-h) of AgNO$_3$. TEM images (a,e), high magnification TEM images (b,f), STEM images (c,g), and EDS elemental mapping images (d,h).
Fig. S4 SEM images of (a) BM-ZIFs and (b) ZnCo$_2$O$_4$ NPs after calcination at 450 °C, and (c) XRD analysis of ZnCo$_2$O$_4$ NPs.
Fig. S5 CV curves of 1st, 2nd, and 5th cycles at a scan rate of 0.1 mV s\(^{-1}\) for (a) ZnCo\(_2\)O\(_4\) NPs, (b) ZnCo\(_2\)O\(_4\) HSs, and (c) ZnCo\(_2\)O\(_4\)@Ag HSs, respectively, with a voltage range of 0.01-3.0 V. CV curves of 1st, 2nd, and 5th cycles at a scan rate of 5.0 mV s\(^{-1}\) for (d) ZnCo\(_2\)O\(_4\) NPs, (e) ZnCo\(_2\)O\(_4\) HSs, and (f) ZnCo\(_2\)O\(_4\)@Ag HSs.
Fig. S6 High-resolution XPS analysis spectrum of Ag 3d for ZnCo$_2$O$_4$@Ag HSs after 10 times of galvanostatic charging/discharging (a) with fully lithiated state, and (b) fully delithiated state.
Fig. S7 The first galvanostatic cycle discharge/charge voltage profiles for ZnCo$_2$O$_4$ NPs, ZnCo$_2$O$_4$ HSs, and ZnCo$_2$O$_4$@Ag HSs at a current density of 1 A g$^{-1}$.
Fig. S8 SEM images of the surface of (a) ZnCo$_2$O$_4$ NPs, (b) ZnCo$_2$O$_4$ HSs, and (c) ZnCo$_2$O$_4$@Ag HSs electrodes before cycling. *Ex-situ* SEM images of fully delithiated (d) ZnCo$_2$O$_4$ NPs, (e) ZnCo$_2$O$_4$ HSs, and (f) ZnCo$_2$O$_4$@Ag HSs electrodes after 200 cycles.
Fig. S9 Equivalent circuit model for ZnCo$_2$O$_4$ NPs, ZnCo$_2$O$_4$ HSs, and ZnCo$_2$O$_4$@Ag HSs electrodes after cycling.
Fig. S10 Nyquist plots of the fully delithiated ZnCo$_2$O$_4$ NPs, ZnCo$_2$O$_4$ HSs, and ZnCo$_2$O$_4$@Ag HSs before cycling.
Table S1. Capacity values of ZnCo$_2$O$_4$ NPs, ZnCo$_2$O$_4$ HSs, and ZnCo$_2$O$_4$@Ag HSs at high current densities of 10 A g$^{-1}$, 15 A g$^{-1}$, 20 A g$^{-1}$, and 0.5 A g$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th>10 A g$^{-1}$</th>
<th>15 A g$^{-1}$</th>
<th>20 A g$^{-1}$</th>
<th>0.5 A g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCo$_2$O$_4$ NPs</td>
<td>562 mAh g$^{-1}$</td>
<td>454 mAh g$^{-1}$</td>
<td>355 mAh g$^{-1}$</td>
<td>784 mAh g$^{-1}$</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$ HSs</td>
<td>583 mAh g$^{-1}$</td>
<td>479 mAh g$^{-1}$</td>
<td>384 mAh g$^{-1}$</td>
<td>780 mAh g$^{-1}$</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$@Ag HSs</td>
<td>627 mAh g$^{-1}$</td>
<td>610 mAh g$^{-1}$</td>
<td>572 mAh g$^{-1}$</td>
<td>689 mAh g$^{-1}$</td>
</tr>
<tr>
<td>Active material</td>
<td>Cycling performance</td>
<td>Rate capability</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------------------------</td>
<td>------------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Mesoporous ZnCo$_2$O$_4$ microspheres</td>
<td>721 mAh g$^{-1}$ after 80 cycles</td>
<td>382 mAh g$^{-1}$ at 5.0 A g$^{-1}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Porous spinel ZnxCo${3-x}$O$_4$ hollow polyhedra</td>
<td>990 mAh g$^{-1}$ after 50 cycles at 0.1 A g$^{-1}$</td>
<td>575 mAh g$^{-1}$ at 9.0 A g$^{-1}$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ZnO/ZnCo$_2$O$_4$/C core/shell</td>
<td>669 mAh g$^{-1}$ after 250 cycles at 0.5 A g$^{-1}$</td>
<td>715 mAh g$^{-1}$ at 1.6 A g$^{-1}$</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Te@ZnCo$_2$O$_4$ nanofibers</td>
<td>956 mAh g$^{-1}$ after 100 cycles at 0.1 A g$^{-1}$</td>
<td>587 mAh g$^{-1}$ at 1.0 A g$^{-1}$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$ 3D hierarchical twin microspheres</td>
<td>550 mAh g$^{-1}$ after 2000 cycles at 5.0 A g$^{-1}$</td>
<td>790 mAh g$^{-1}$ at 10 A g$^{-1}$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ZnCoO$_4$@Ag HSs</td>
<td>616 mAh g$^{-1}$ after 900 cycles at 1.0 A g$^{-1}$</td>
<td>572 mAh g$^{-1}$ at 20 A g$^{-1}$</td>
<td>In this work</td>
<td></td>
</tr>
</tbody>
</table>

Table S2. Cycling performance and rate capabilities of representative ZnCo$_2$O$_4$ anode materials for Li-ion batteries.
Table S3. Fitted electrochemical impedance component values of ZnCo$_2$O$_4$ NPs, ZnCo$_2$O$_4$ HSs, and ZnCo$_2$O$_4$@Ag HSs electrodes after (a) 1 cycle and (b) 200 cycles.

<table>
<thead>
<tr>
<th></th>
<th>R_{SEI} (Ω)</th>
<th>R_{CT} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCo$_2$O$_4$ NPs</td>
<td>1.64</td>
<td>17.1</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$ HSs</td>
<td>1.62</td>
<td>19.6</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$@Ag HSs</td>
<td>1.82</td>
<td>65.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R_{SEI} (Ω)</th>
<th>R_{CT} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCo$_2$O$_4$ NPs</td>
<td>4.58</td>
<td>45.9</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$ HSs</td>
<td>3.38</td>
<td>21.1</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$@Ag HSs</td>
<td>2.74</td>
<td>18.1</td>
</tr>
</tbody>
</table>
References

