SUPPLEMENTARY INFORMATION

A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and of the Fenton reaction for advanced wastewater treatment

Emmanuel Mousset*a,c, Victor Huang Weiqi*a,b, Brandon Foong Yan Kai*a,b, Jun Shyang Koh*a, Jun Wei Tng*a,b, Zuxin Wang*a, Olivier Lefebvre*a

* Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore

b NUS High School of Mathematics and Science, 20 Clementi Avenue 1, 129957, Singapore

c Present address: Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 rue Grandville BP 20451, 54001 Nancy cedex, France

Number of pages including cover : 3
Number of figures : 3
Number of tables : 0

List of figures:

Page S2 Fig. S1. Pictures of the two 3D-printed photoelectrocatalytic reactors.

Page S3 Fig. S2. Surface examination of FTO (a, b) and TiO₂ thin film (c, d) by SEM ((a, c) ×5000 and (b, d) ×20000 magnification). Optimal TiO₂-coating conditions: [TiO₂] = 0.311 mg cm⁻².

Page S4 Fig. S3. Absorbance spectra of MB photocatalytic degradation (under light irradiation at 365 nm) at optimal TiO₂ loading (0.311 mg cm⁻²) of thin film coating.

E-mail: ceelop@nus.edu.sg ; phone: +65 9225 8267
Fig. S1. Pictures of the two 3D-printed photoelectrocatalytic reactors.
Fig. S2. Surface examination of FTO (a, b) and TiO$_2$ thin film (c, d) by SEM ((a, c) ×5000 and (b, d) ×20000 magnification). Optimal TiO$_2$-coating conditions: [TiO$_2$] = 0.311 mg cm$^{-2}$.
Fig. S3. Absorbance spectra of MB photocatalytic degradation (under light irradiation at 365 nm) at optimal TiO$_2$ loading (0.311 mg cm$^{-2}$) of thin film coating.