Electronic Supplementary Information (ESI) of

Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids

Xiaoen Wang, a Haijin Zhu, a Gaetan M. A. Girard, a Ruhamah Yunis, a Douglas R. MacFarlane, b David Mecerreyes, c Aninda J. Bhattacharyya, d Patrick C. Howlett, a Maria Forsyth * a

a. Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia.

Email: maria.forsyth@deakin.edu.au

b. School of Chemistry, Monash University, Clayton, VIC 3800, Australia.

c. POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa72, 20018 Donostia-San Sebastian, Spain.

d. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
Figure S1. The SEM images of (a) GPE-40/60-Al$_2$O$_3$ and (b) GPE-50/50-Al$_2$O$_3$. The insets are the zoom-in images of highlighted cross-sectional areas.

Figure S2. The comparison of FTIR spectra for (a) 3.8 m Li-IL samples with and without Al$_2$O$_3$ nano-particles; (b) PDADMA TFSI samples with and without Al$_2$O$_3$ nano-particles.

The mechanical properties is critically important for gel electrolytes especially in the applications of all-solid-state batteries. Thus, we selected the GPE-50/50-Al$_2$O$_3$ to investigate the mechanical behaviour by dynamic mechanical analysis (DMA). The DMA measurement was done under compression mode in N$_2$-filled environmental box, the H$_2$O level was less than 100 ppm. As shown in Figure S3, the storage elastic modulus (E') decreases with increasing of temperature which could result from the thermal relaxation of the polymer component. But it should be noted that the elastic modulus at 30 °C is relatively high, at 6.4 MPa.
Figure S3. Temperature dependence of storage elastic modulus (E’) and dissipation factor (tan δ) for GPE-40/60-Al2O3. The frequency is 1Hz and heating rate is 2 °C/min.

For the high voltage behaviour (up to +5 V vs. Li/Li+) we measured linear sweep voltammograms (CV) from -0.5 to +5 V vs. Li/Li+ for the promising GPEs (both GPE-50/50-Al2O3 and GPE-40/60-Al2O3 electrolytes) at a stainless steel (SS) working electrode with a potential sweep rate of 10 mV s⁻¹ at 50 °C. Reversible Li plating/stripping was observed and higher current densities were reached in the case of the GPE-50/50-Al2O3. The results confirm a high voltage stability of the promising GPE.
Figure S4. Linear sweep voltammograms (1st cycle) for GPEs with different composition (GPE-50/50-Al₂O₃ and GPE-40/60-Al₂O₃ electrolytes) at a stainless steel (SS) working electrode with a potential sweep rate of 10 mV s⁻¹ at 50 °C.