Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary information

Barium carbonate as synergistic catalyst for H₂O/CO₂ reduction reaction at Ni-

yttria stabilized zirconia cathode of solid oxide electrolysis cell

Minghao Zheng, Shuang Wang, Yi Yang, Changrong Xia*

CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and

Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology,

University of Science & Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province,

230026, P. R. China

*Tel: ++86-551-63607475; Fax: ++86-551-63601696; E-mail: xiacr@ustc.edu.cn

Supplementary figures

Fig. S1. The schematic of the three-electrode construction where Ni-YSZ is the working electrode

(WE) while the counter electrode (CE) and reference electrode (RE) are platinum.

Fig. S2 The schematic illustration for single cell tests.

Fig. S3 The XRD patterns of YSZ powder, BaCO₃ powder, made by heating Ba(Ac)₂ at 800 °C for 1 hour, and BaCO₃ infiltrated YSZ powder, made by dropping Ba(Ac)₂ solution (0.6 mol L⁻¹) into YSZ powder followed by heating at 800 °C for 1 hour. The BaCO₃ content is 34.8 wt.%.

Fig. S4 The XRD patterns of BaCO₃ infiltrated YSZ (a) before exposing to SOEC operating atmosphere, (b) after exposing to 20%H₂O-80%H₂ atmosphere at 800 °C for 20 hours, (c) after exposing to 70%CO₂-30%CO atmosphere at 800 °C for 20 hours, and (d) after exposing to 20%H₂O-10%H₂-49%CO₂-21%CO atmosphere at 800 °C for 20 hours.

Fig. S5 Impedance spectra measured under open circuit conditions for the single cell (a) Ni-YSZ and (b) BaCO₃ infiltrated Ni-YSZ fuel electrode, respectively, when ambient air is used as the oxidant and humidified hydrogen as the fuel. The data was obtained after the single cell was tested in fuel cell model for 90 minutes with a constant current density of 0.5 A cm⁻² at 800 °C and for additional 5 minutes to measure the I-V curves as shown in Fig. 3.

Fig. S6 The single cell performance at 800 °C for electrolysis of CO₂ using 70%CO₂-30%CO as the fuel with different BaCO₃ contents. (a) I-V curves, (b) AC impedance spectra measured under open-circuit conditions and the resistance corresponding to the electrolyte and lead wires is deducted to clearly compare the electrode performance and (c) the current density at 1.3 V and the interficial polarization resistance under open-circuit conditions as a function of BaCO₃ content.

Fig. S7 (a) Out gas percentage and (b) the CO₂ conversion ratio as a functional of elapsed time under SOEC condition with a current density of -0.5 A cm⁻² for Ni-YSZ electrode and 8.9 wt.%
BaCO₃/Ni-YSZ electrode when 80%H₂-20%CO₂ is used as the fuel with a gas flow of 20 mL min⁻

1.

Fig. S8 (a) Impedance spectra measured at 800 °C for CO₂ electrolysis in 70%CO₂-30%CO atmosphere on Ni-YSZ cathodes with different BaCO₃ contents using three-electrode installation at a bias of -0.3 V, where the resistance corresponding to the electrolyte and lead wires is deducted, (b) interfacial polarization resistance as a function of BaCO₃ content.

Fig. S9 Polarization resistance as a function of partial pressure as listed in Table 2 to figure out the rate-determining step for H₂O electrolysis. The resistance is obtained using three-electrode installation at a bias of -0.3 V in series of H₂O contents with H₂ as the carrier gas.

Fig. S10 Polarization resistance as a function of partial pressure as listed in Table 2 to figure out the rate-determining step for CO_2 electrolysis. The resistance is obtained using three-electrode installation at a bias of -0.3 V in series of CO_2 contents with CO as the carrier gas.

Supplementary table

				C	,			
	Ni-YSZ				BaCO ₃ /Ni-YSZ			
T(°C)	R1	R2	R3		R1	R2	R3	
	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$		$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	
800	0.047	0.434	0.052		0.054	0.523	0.132	
750	0.091	0.481	0.072		0.117	0.662	0.231	
700	0.177	0.585	0.131		0.197	0.710	0.487	

infiltration from Fig. S5.

Table S1 The fitting polarization resistance under open circuit conditions before and after BaCO₃

Table S2 Out gas percentage and CO₂ conversion ratio under open circuit condition (RWGS only) and under a constant current of -0.5 A cm⁻² (RWGS+SOEC) with a flow of 20 mL min⁻¹ and 80%H₂-20%CO₂ as the fuel for Ni-YSZ/YSZ/LSM+YSZ cell and 8.9 wt.%BaCO₃/ Ni-

Call	Elapsed time (h)	Operate - condition	Outlet gas component (%)			CO ₂
configuration			H_2	CO_2	СО	conversion ratio (%)
	0	RWGS	71.56	13.54	14.90	52.4
		RWGS+SOE C	73.29	9.28	17.43	65.3
	2	RWGS	71.99	14.28	13.73	49.0
		RWGS+SOE C	72.32	10.43	17.25	62.3
-	4	RWGS	71.73	13.94	15.40	52.3
Ni-YSZ/		RWGS+SOE C	72.8	9.89	17.31	63.6
I SM+VS7	6	RWGS	69.28	13.38	15.34	53.4
LSIVIT I SZ		RWGS+SOE C	73.62	9.04	17.34	65.7
-	8	RWGS	71.74	14.11	14.05	49.9
		RWGS+SOE C	72.81	10.64	16.55	60.9
-	10	RWGS	72.09	14.77	13.14	47.1
		RWGS+SOE C	72.43	11.28	16.29	62.7
		RWGS	72.54	14.98	12.48	45.4
	0	RWGS+SOE C	74.18	9.61	16.21	62.8
	2	RWGS	71.29	15.23	13.48	47
BaCO ₃ /		RWGS+SOE C	73.54	10.89	15.57	58.8
Ni-YSZ/	4	RWGS	72.39	14.08	13.53	49.0
YSZ/ LSM+YSZ		RWGS+SOE C	74.39	10.01	15.60	60.9
-	6	RWGS	71.17	14.86	13.97	48.1
		RWGS+SOE C	73.24	10.32	16.44	61.4
-	8	RWGS	73.24	14.38	12.38	46.3
		RWGS+SOE	74.49	11.63	13.88	54.4

 	C				
	RWGS	72.96	14.79	12.25	45.3
10	RWGS+SOE C	73.37	11.43	15.20	57.1