## **Supporting Information**

## Improved sodium-ion storage performance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene by

## sulfur doping

Jiabao Li, Dong Yan, Shujin Hou, Yuquan Li, Ting Lu, Yefeng Yao, Likun Pan\*

Shanghai Key Laboratory of Magnetic Resonance,

School of Physics and Materials Science, East China Normal University, Shanghai

200062, China

\*Corresponding author. Tel.: +8621 62234132; fax: +8621 62234321;

E-mail address: lkpan@phy.ecnu.edu.cn

## **Supplementary figures**



Fig. S1  $N_2$  adsorption/desorption isotherms (a) and pore size distribution (b) of

Ti<sub>3</sub>AlC<sub>2</sub>.



Fig. S2 High-resolution S 2p spectra of ST-1 (a) and ST-2 (b).



Fig. S3 High-resolution C 1s spectra of  $Ti_3C_2T_x$  (a), ST-1 (b) and ST-2 (c).



Fig. S4 TG analysis: (a)  $Ti_3C_2T_x$  thermally treated at 300 °C under N<sub>2</sub> for 3 h and ST-1;  $Ti_3C_2T_x$  thermally treated at 400 °C under N<sub>2</sub> for 3 h and ST-2.



Fig. S5 The preparation process of S-doped  $Ti_3C_2T_x$  from  $Ti_3C_2T_x$ : During the thermal treatment under N<sub>2</sub>, H<sub>2</sub>S generated from the decomposition of thiourea reacts with

 $Ti_3C_2T_x$ , resulting in the formation of S-doped  $Ti_3C_2T_x$ .



Fig. S6 Schematic illustration of the solidation process of S-doped  $Ti_3C_2T_x$ .



Fig. S7 (a) CV curves of ST-1 from 3 to 0.005 V at 0.2 mV s<sup>-1</sup>. (b) Ex-situ XRD patterns during CV cycles: A (discharged to 1.5 V in the first cycle), B (discharged to 0.005 V in the first cycle), C (charged to 3.0 V in the first cycle), D (discharged to 0.005 V in the second cycle), E (charged to 3.0 V in the second cycle).



Fig. S8 Nyquist plots of  $Ti_3C_2T_x$ , ST-1 and ST-2 before cycling.



Fig. S9 Coulombic efficiencies at 0.1 A  $g^{-1}$  (a) and rate performances (b) of  $Ti_3C_2T_x$ , ST-1 and ST-2.



Fig. S10 FESEM images of  $Ti_3C_2T_x$  (a) and ST-1 (b) after 100 cycles at 0.1 A g<sup>-1</sup>.



Fig. S11 Discharge/charge profiles of  $Ti_3C_2T_x$  (a) and ST-2 (b) at different current

densities.



Fig. S12 FESEM, TEM and HRTEM images of  $Ti_3C_2T_x$  (a, c and e) and ST-1 (b, d,

and f) electrodes after 2000 cycles at 0.5 A  $g^{\mbox{-}1}.$ 



Fig. S13 FESEM images of ST-3 (a and b). XRD patterns of  $Ti_3AlC_2$ ,  $Ti_3C_2T_x$  and ST-3 (c). XPS spectrum (d) and corresponding high-resolution Ti 2p (e) and C 1s (f) spectra of ST-3.



Fig. S14 Comparison of commercial thiourea (2 g, a) after thermal treatment under  $N_2$  at 200 °C (b), 300 °C (c) and 400 °C (d) for 3 h with a heating rate of 2 °C min<sup>-1</sup>.



Fig. S15 Sodium storage performance of ST-3: (a) CV curves from 3 to 0.005 V at a scan rate of 0.2 mV s<sup>-1</sup>. (b) Discharge/charge profiles at 0.1 A g<sup>-1</sup>. (c) Cycle performance at 0.1 A g<sup>-1</sup>. (d) Rate performance.

|                                  | Pore parameters                                          |                        |                                                   |  |
|----------------------------------|----------------------------------------------------------|------------------------|---------------------------------------------------|--|
| Sample                           | Specific surface area (cm <sup>2</sup> g <sup>-1</sup> ) | Average pore size (nm) | Pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) |  |
| Ti <sub>3</sub> AlC <sub>2</sub> | 10.802                                                   | 6.284                  | 0.02953                                           |  |
| $Ti_3C_2T_x$                     | 83.061                                                   | 24.362                 | 0.5059                                            |  |
| ST-1                             | 57.983                                                   | 29.101                 | 0.4218                                            |  |
| ST-2                             | 29.879                                                   | 24.393                 | 0.1709                                            |  |

Table S1 Pore parameters of  $Ti_3AlC_2$ ,  $Ti_3C_2T_x$ , ST-1 and ST-2.

Table S2 Atomic concentration (at.%) of elements detected from XPS measurement for  $Ti_3C_2T_x$ , ST-1 and ST-2 and ST-3.

| Samples                                       | Ti   | С     | S    | 0     | F     |
|-----------------------------------------------|------|-------|------|-------|-------|
| Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | 19.8 | 41.08 | -    | 23.65 | 15.48 |
| ST-1                                          | 20.1 | 36.94 | 4.01 | 29.09 | 9.86  |
| ST-2                                          | 20.2 | 35.65 | 1.89 | 35.42 | 6.84  |
| ST-3                                          | 19.8 | 39.92 | _    | 28.86 | 11.32 |

Table S3 Comparison of sodium storage performance of ST-1 with other  $Ti_3C_2T_x$  based anodes.

| Sample                                                                 | Voltage range<br>(V) | Cycling performance                                                               | Long-term<br>cycling<br>performance at<br>high current<br>density                     | Ref. |
|------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|
| Multilayered<br>Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>MXene | 0.01-2.5             | About 100<br>mAh g <sup>-1</sup> after<br>100 cycles at<br>0.05 A g <sup>-1</sup> | $68.3 \text{ mAh } \text{g}^{-1}$<br>after 1000<br>cycles at 0.2 A<br>$\text{g}^{-1}$ | 1    |
| Ti <sub>2</sub> CT <sub>x</sub> MXene                                  | 0.1-3.0              | 142 mAh g <sup>-1</sup><br>after 100<br>cycles at 0.02<br>A g <sup>-1</sup>       | /                                                                                     | 2    |
| Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>MXene/CNT<br>paper    | 0.01-3.0             | 175 mAh g <sup>-1</sup><br>after 100<br>cycles at 0.02<br>A g <sup>-1</sup>       | /                                                                                     | 3    |

| Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub><br>MXene                                | 0.1-3.0   | 100 mAh g <sup>-1</sup><br>after 100<br>cycles at 0.02<br>A g <sup>-1</sup>        | /                                                                      | 4         |
|---------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|
| $\begin{array}{c} Ti_{3}C_{2}T_{x}\\ MXene\\ derived\\ NaTi_{1.5}O_{8.3} \end{array}$ | 0.01-3.0  | 136 mAh g <sup>-1</sup><br>after 150<br>cycles at 0.2 A<br>$g^{-1}$                | /                                                                      | 5         |
| S-doped<br>$Ti_3C_2T_x$<br>MXene                                                      | 0.005-3.0 | $183.2 \text{ mAh } \text{g}^{-1}$ after 100<br>cycles at 0.1 A<br>g <sup>-1</sup> | 138.2 mAh g <sup>-1</sup><br>after 2000<br>cycles at 0.5 A<br>$g^{-1}$ | This work |

References

- 1. X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu and L. Chen, *J. Am. Chem. Soc.*, 2015, **137**, 2715-2721.
- 2. X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo and A. Yamada, *Nat. Commun.*, 2015, **6**, 6544.
- 3. X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C. E. Ren, J. Li, B. W. Byles, E. Pomerantseva, G. Wang and Y. Gogotsi, *Nano Energy*, 2016, **26**, 513-523.
- 4. Y. Xie, Y. Dall'Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, *ACS Nano*, 2014, **8**, 9606-9615.
- 5. Y. Dong, Z. S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi and X. Bao, *ACS Nano*, 2017, **11**, 4792-4800.