Supporting Information

On-site Evolution of Ultrafine ZnO nanoparticles from Hollow Metal-Organic

Frameworks for Advanced Lithium Ion battery Anode

Yiqiong Zhang, Yanbing Lu,* Shi Feng, Dongdong Liu, Zhaoling Ma, and Shuangyin

Wang *

Experimental section

Synthesis of ZIF-8 microcubes. 1.81 g of zinc nitrate hexahydrate was dissolved in 8 mL of deionized water, and then 1.0 g of 2-methylimidazole was dissolved in 12.09 g of ammonium hydroxide solution; after that zinc nitrate and 2-methylimidazole were mixed together. which was stirred for 10 min at room temperature to complete the crystallization.

Synthesis of ZIF-8@ZnO microcubes. Typically, 40 mg ZIF-8 microcubes was spread out on the quartz boat, and moved into the plasma tube reactor which is filled with Ar/H₂ (contain 10 vol % of H₂) gases, then it was directly treated by plasma (commercial 13.56 MHz RF source) with power of 200 W and pressure of 50 Pa for 3 h. After that, the plasma treated samples were taken out from the plasma tube reactor and exposed to air, which named as ZIF-8@ZnO. Compared with the synthesis of hierarchical ZIF-8@ZnO, 40 mg ZIF-8 microcubes was treated by plasma for three durations of 0, 1, and 4 h. The following procedure is the same asthat for the synthesis of ZIF-8@ZnO microcubes. Similarly, other MOFs, such as ZIF-67, were also treated by the same method to investigate the effect of plasma treatment.

Synthesis of ZIF-8 cages. In a typical synthesis, 40 mg of the ZIF-8 microcubes was dissolved into 200 ml of methanol solution containing 1 g of tannic acid. After stirring for 20 min, the product is collected by centrifugation and washed with ethanol.

Synthesis of hollow ZIF-8@ZnO hybrid structures. Typically, 40 mg of hollow ZIF-8 cages was spread out on the quartz boat, and moved into the plasma tube reactor which is filled with Ar/H₂ (contain 10 vol % of H₂) gases, then it was directly treated by plasma (commercial 13.56 MHz RF source) with power of 200 W and pressure of 50 Pa for 3 h. After that, the plasma treated samples were taken out from the plasma tube reactor and exposed to air, which named as h-ZIF-8@ZnO. For comparison, 40 mg hollow ZIF-8 cages were treated by plasma for 4 hours with the same procedure.

Electrochemical Measurements. Electrochemical measurements were performed by the use of 2032 coin cell. The cell assembly was carried out in an Ar-filled glovebox with moisture and oxygen concentrations below 1.0 ppm. Li foil served as the counter electrode and reference electrode, and the working electrodes consist of 70 wt.% of active material, 20 wt.% of conductive carbon black (Super-P), and 10 wt.% of polymer binder (polyvinylidene fluoride, PVDF). The electrolyte was a 1.0 M LiPF₆ solution in a mixture of ethylene carbonate/dimethylcarbonate

(EC/DMC) (1:1 in volume), and a polypropylene film(Celgard-2400) was used as a separator. The galvanostatic charge/discharge cycles were carried out on a Land CT2001A battery tester between 0.001 and 3.0 V at various current densities. Electrochemical impedance spectroscopy and cycle voltammetry were conducted on a PGSTAT 302N electrochemical workstation at a scan rate of 0.1 mV s⁻¹. At least five parallel cells were tested for each electrochemical measurement, in order to make sure that the results were reliable and represented the typical behavior of the samples.

The battery disassembly process: After being tested for 500 cycles, the cycled h-ZIF-8@ZnO electrode was obtained by disassembling the coin cell in an Ar-filled glove box, then subsequently rinsing with dimethyl carbonate (DMC) for several times in the glove box to remove the internal electrolyte and finally dried at 60 °C. The dried electrode materials was scraped from Cu foil and collected for further characterization.

Materials Characterization. The morphology and microstructure of all samples were investigated by scanning electron microscope (SEM, Hitachi, S-4800) and transmission electron microscope (TEM, FEI, F20 S-TWIX). The X-ray diffraction (XRD) measurements used a Rigaku D/MAX 2500 diffractometer with Cu Kα radiation. The thermogravimetric analysis (TGA) was carried out by a STA449C instrument with a heating rate of 5 °C min⁻¹ from the room temperature to 1000 °C in air. The nitrogen adsorption-desorption isotherms were measured at liquid nitrogen temperature (77 K) using a volumetric adsorption analyzer (Micromertics ASAP 2020HD88). The chemical characteristics of the samples were analyzed by Fourier transform infrared spectrometer (FTIR, WQF-410), the spectra were recorded in FTIR spectrometer with the samples prepared as KBr discs. The X-ray photoelectron spectroscopic (XPS) measurements were carried out with an ESCALAB 250Xi using a monochromic Al X-ray source (200 W, 20 eV). The Electron paramagnetic resonance (EPR) measurements were carried out at a Bruker model A300 spectrometer. The synchrotron X-ray spectroscopy measurements at Zn K-edge were performed at BL20A at the National Synchrotron Radiation Research Center (NSRRC), Taiwan.

Supplementary Figures captions

Figure S1. The SEM images of ZIF-8 treated by plasma etching with different time (a)

0 h; (b) 1 h; (c) 3 h; (d) 4 h.

Figure S2. The SEM images of (a) ZIF-67 and (b) ZIF-67 after Ar/H $_2$ plasma etching.

Figure S3. (a-c) The FESEM, TEM, HRTEM images of ZIF-8 cage (denoted as h-ZIF-8)

Figure S4. The SEM images of (a) ZIF-8 cages and (b) hollow ZIF-8@ZnO hybrid structures which after the plasma etching.

Figure S5. The SEM images of (a) a broken ZIF-8 cage and (b) after the Ar/H $_{\rm 2}$ plasma

etching (h-ZIF-8@ZnO).

Figure S6. The SEM images of the hollow ZIF-8@ZnO hybrids after the Ar/H_2 plasma etching for 4 h.

Figure S7. The XRD patterns of ZIF-8 with Ar/H $_2$ plasma for different time (0 h, 1 h, 3

h, and 4 h).

Figure S8. (a) The N_2 adsorption-desorption isotherms and (b) pore size distribution of

ZIF-8@ZnO and ZIF-8;

Figure S9. High-resolution XPS spectrum of N 1s of h-ZIF-8@ZnO hybrids.

Figure S10. (a) XPS survey spectrum and high-resolution XPS spectrum of (b) C 1s, (c) O 1s, (d) N 1s, (e) Zn 2p, and (f) Zn LMM of ZIF-8 and ZIF-8@ZnO. We can clearly see that the peaks of O=C-N, C-O, and metal oxides (Zn-O) are strongly enhanced after plasma etching, which suggests the slight oxidation of carbon species and the existence of Zn-O bonding on the surface of the ZIF-8@ZnO after plasma treatment. In addition, the reduction of the N 1s spectrum for ZIF-8@ZnO also indicated that

some ligands were destroyed after plasma. Interestingly, after Ar/H₂ plasma treatment, the Zn 2p and Zn LMM peaks of ZIF-8@ZnO showed a slight broadening and shifting to lower binding energy, which may be attributed to the broken of Zn-N coordination bonds and the coordinatively unsaturated Zn species were easily oxidized to form Zn-O bonds when exposed to air.

Figure 11. The EPR results of the ZIF-8@ZnO and ZIF-8.

Figure S12. The CV curves of (a) ZIF-8@ZnO, (b) ZIF-8 cage, and (c) solid ZIF-8 anodes

at a scan rate of 0.1 mV s⁻¹ in the voltage range of 3.0-0.001 V.

Figure S13. Discharge-charge profiles of hollow ZIF-8 at a current density of 0.2 A g⁻¹

in the voltage range of 3.0-0.001 V.

Figure S14. Cycling performance of the h-ZIF-8@ZnO anodes synthesized with different plasma treatment time (0h, 1h, 3h, and 4h) at the current density of 0.2 A g⁻¹. The h-ZIF-8@ZnO electrode (treated by plasma for 3h) exhibited an initial discharge and charge capacity of 1368.2 and 960.9 mAh g⁻¹, respectively, with the capacity retention about 70.2%. After 100 cycles, the h-ZIF-8@ZnO (plasma-3h) electrode achieves a reversible capacity of 759.9 mAh g⁻¹, displaying that the good cycling stability. While the initial discharge/charge capacity of h-ZIF-8@ZnO (plasma-4h), h-ZIF-8@ZnO (plasma-1h), and h-ZIF-8 samples are 1490.2/ 796.8, 942.6/ 649.8, and 651.2/ 356.4 mAh g⁻¹, with the capacity retention about 53.4%, 68.9%, and 54.7%, after 100 cycles, the capacity remains at 676.5, 554.1, and 404.7 mAh g⁻¹, respectively. Given these results, we can deduce that the h-ZIF-8@ZnO electrode which treated by plasma for 3 h could be the optimized anode materials.

Figure S15. (a) FESEM image and (b) TEM image of the h-ZIF-8@ZnO electrode after 500 cycles at 1.0 A g⁻¹. As indicated by the FESEM and TEM images, the hollow structure of h-ZIF-8@ZnO electrode is reasonably preserved after cycling test.

Supplementary Chart and Table

Chart S1. Atomic ratio of ZIF-8 and ZIF-8@ZnO from XPS. It could be found that the atom ratio of Zn to N for ZIF-8@ZnO increased, indicating Zn-N coordination bonds were partially destroyed by plasma, and the high contents of O (25.48 %) in comparison to that of pure ZIF-8, further indicating the increased oxygen of ZIF-8@ZnO after plasma etching.

Sample	C 1s	N 1s	O 1s	Zn 2p3
ZIF-8	61.52 %	27.38 %	2.63 %	8.47 %
ZIF-8@ZnO	56.10 %	12.38 %	25.48 %	6.04 %

Table S1. Elemental composition determined by XPS.

Table S2. Impedance parameters derived using equivalent circuit model for ZIF-8, ZIF-8@ZnO, hollow-ZIF-8 and hollow-ZIF-8@ZnO as the anode materials for LIBs beforecycling, respectively.

Samples	Rs, Ω	Rct, Ω
ZIF-8	4.58	245
ZIF-8@ZnO	3.13	209
h-ZIF-8	3.68	108
h-ZIF-8@ZnO	2.81	91.2

 Table S3.
 Summary of electrochemical performances of different ZnO-based

Sample	Current density (A g ⁻¹)	Initial discharge/charge capacity (mAh g-	Reversible capacity (mAh g ⁻ ¹)/Cycles/Current	References
		1)	density (A g ⁻¹)	
Hollow ZIF-8@ZnO	0.2	1368.2/960.9	637.9/ 500/ 1.0	This work
hybrids				
AgC@ZnO-C@Ag-C	0.1	2396/ 1569	1250/ 150/ 1.0	1
ZnO@ZnO QDs/C core-	0.5	785/ 712	699/ 100/ 0.5	2
shell NRAs				

electrodes as anodes in Lithium Ion Batteries.

ZnO-ZnCo ₂ O ₄	1.0	1299/ 987	1016/ 250/ 2.0	3
nanosheet				
ZnO/ZnO@C	0.1	1442/ 878	307/ 500/ 5.0	4
ZnO/ZnCo ₂ O	0.045	1599/ 1071	900/ 30/ 0.045	5
$ZnO@\alpha$ -Co(OH) ₂ Core-	0.2	1425/ 1070	1127/ 150/ 0.2	6
Shell Hierarchical				
Microspheres				
ZnO-Cu-C porous	0.2	1472/ 876	769/ 500/ 0.2	7
Porous ZnO nanosheets	0.05	1120/ 750	400/ 100/ 0.5	8
ZnO/ZnCo ₂ O ₄ /C	0.5	1278.8/ 974	669/ 250/ 0.5	9
Hybrids				

Supplementary References

- 1 Q. Xie, Y. Ma, X. Wang, D. Zeng, L. Wang, L. Mai and D.-L. Peng, *ACS Nano*, 2015, **10**, 1283-1291.
- 2 G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C. C. Li and H. Duan, *Adv. Mater.*, 2015, **27**, 2400-2405.
- 3 X. Xu, K. Cao, Y. Wang and L. Jiao, *J. Mater. Chem. A*, 2016, **4**, 6042-6047.
- 4 Q. Li, H. Zhang, S. Lou, Y. Qu, P. Zuo, Y. Ma, X. Cheng, C. Du, Y. Gao and G. Yin, *Ceram. Inter.*, 2017, **43**, 11998-12004.
- 5 C. W. Lee, S.-D. Seo, D. W. Kim, S. Park, K. Jin, D.-W. Kim and K. S. Hong, *Nano Res.*, 2013, **6**, 348-355.
- 6 Y. Bai, W. Liu, C. Yu, T. Wang, J. Feng and S. Xiong, *J. Phys. Chem. C*, 2016, **120**, 2984-2992.
- 7 Q. Xie, L. Lin, Y. Ma, D. Zeng, J. Yang, J. Huang, L. Wang and D.-L. Peng, *Electrochim. Acta*, 2017, **226**, 79-88.
- 8 X. Huang, X. Xia, Y. Yuan and F. Zhou, *Electrochim. Acta*, 2011, **56**, 4960-4965.
- 9 X. Ge, Z. Li, C. Wang and L. Yin, *ACS Appl. Mater. Inter.*, 2015, **7**, 26633-26642.