Supporting Information

Intermetallic Pd₃Pb Nanowire Networks Boost Ethanol Oxidation and Oxygen Reduction Reaction with Significantly Improved Methanol Tolerance

Qiurong Shi, Chengzhou Zhu,* Cuixia Bi, Haibing Xia, Mark H. Engelhard, Dan Du, Yuehe Lin*

Supporting Figures

Figure S1. (A) Nitrogen physisorption isotherm, and (B) pore size distributions (black curve) and cumulative pore volumes (V_{cumulative}, red curve) of as-fabricated IM-Pd₃Pb NNs.

Figure S2. TEM images and size distribution (insets) of Pd_3Pb NNs synthesized at 125 °C (A) and 150 °C (B), respectively. XRD pattern of Pd_3Pb NNs obtained at 125 °C, 150 °C and 170 °C, respectively.

Figure S3. XPS of the (A) Pb 4f and (B) Pd 3d peaks of IM-Pd₃Pb NNs.

Figure S4. Time-dependent TEM images of the IM-Pd₃Pb NNs growth precedures tracted at 2 min (A), 5 min (B), 15 mins (C), and 30 min (D) after reaction begins.

Figure S5. TEM image and size distribution (inset) of as-synthesized Pd NCs under the same condition with IM-Pd₃Pb NNs only except the absence of Pb(acac)₂.

Figure S6. LSV of commercial Pt/C (A) and IM-Pd3Pb NNs (B) before and after 100 % IR compensation.

Figure S7. TEM image of as-synthesized Pd NSs.

Figure S8. (A) LSV curves of Pd NSs and IM-Pd₃Pb NNs obtained in oxygen saturated 0.1 M KOH aqueous solution. (B) CV curves of Pd NSs and IM-Pd₃Pb NNs in 1 M KOH aqueous solution containing 1 M ethanol.

Figure S9. MA and SA of commercial Pt/C and IM-Pd3Pb NNs at 0.85 V and 0.9 V with error correction, respectively.

Figure S10. TEM image (A), HRTEM image (B) and EDS (C) of IM-Pd₃Pb NNs after ADT test.

Supporting Tables

Na ₂ PdCl ₄	$Pb(acac)_2$	Pd/Pb(precursor)	Pd/Pb(EDS)
7.1 mg	19.5 mg	1/2	2.95
7.1 mg	16.2 mg	1/6	3.05
7.1 mg	13.0 mg	3/4	3.30

Table S1. The atomic ratios of Pd/Pb under different amount of Pd and Pb precursors.

Table S2. The reaction temperature and time for formation of intermetallic phases from previous reported works.

IM NCs	Solvent	temperature	time	reference
Pd ₃ Pb NNs	EG	170 °C	1 h	our work
Pd ₃ Pb NPs	annealing	600 °C	24 h	1
Pd ₃ Pb NPs	TEG	180 °C	15 min	2
Pt ₃ Co	OAm	160 °C	8 h	3
Pd_2Sn	OAm,	300 °C	3 h	4
	MAHC			
PtBi	OAm	200 °C	1.5 h	5
PtPb/Pt	OAm+ODE	160 °C	5.5 h	6
Pt ₃ Zn	DMF	180 °C	9 h	7
PtCu ₃	OAm	170 °C	24 h	8

References

[1] Z. M. Cui, H. Chen, M. T. Zhao, F. J. DiSalvo, Nano lett. 2016, 6, 2560-2566.

[2] R. Jana, U. Subbarao, S. C. Peter, J. Power Sources, 2016, 301, 160-169.

[3] L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, *Nat. Commun.* **2016**, *7*, 11850.

[4] Z. Luo, J. Lu, C. Flox, R. Nafria, A. Genc, J. Arbiol, J. Llorca, M. Ibanez, J.

Morante, A. Cabot, J. Mater. Chem. A 2016, 4, 16706.

[5] H. Liao, J. Zhu, Y. Hou, Nanoscale 2014, 6, 1049.

[6] L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J. Ma, D. Su, Q. Huang, *Science* **2016**, *354*, 1410.

[7] Q. Chen, J. Zhang, Y. Jia, Z. Jiang, Z. Xie, L. Zheng, Nanoscale 2014, 6, 7019.

[8] B. Xia, H. Wu, X. Wang, X. Lou, J. Am. Chem. Soc. 2012, 134,1.