Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

SI 1 TGA curves of GC-Co nanocages in air.

Residual product after combustion is Co_3O_4 . The content of Co in GC-Co composite = (100-44.2)%x73.4% = 40.9%.

SI 2 Raman spectra of GC-Co and GC-Co-S composites.

Host materials	Sulfur loading (wt%)	Areal sulfur loading (mg cm ⁻²)	Capacity loss per cycle	
			Cycles	Loss (%)
GC-Co This work	77	2.0-2.3	500	0.015 (at 1C)
δ-MnO₂ Ref.1	72.5	1.0–1.3	200	0.23 (0.1 Ag ⁻¹)
Hollow Co ₃ S ₄ Ref.2	53	2.5	450	0.079(at 1C)
Hollow TiO ₂ Ref.3	70	1.5	500	0.08 (at 0.5C)
N-Doped N- HPCB Ref.4	70	1.1-1.5	400	0.1 (at 1C)
MnO₂@HCF Ref.5	71	3.5	300	0.085 (at0.5C)
hollow MnO ₂ Ref.6	75.5	2.3-2.7	1500	0.028 (at 0.5C)
Hollow TiO ₂ Ref. 7	53	0.4-0.6	1000	0.033 (at 0.2C)
G–NDHCS Ref.8	78	3.9	200	0.19 (at 0.5C)

SI 3 A comprehensive comparison on electrochemical performances of this work and the other similar structures.

Reference

- 1. K. Cao, H. Liu, Y. Li, Y. Wang and L. Jiao, *Energy Storage Mater.s*, 2017, **9**, 78-84.
- 2. H. Xu and A. Manthiram, *Nano Energy*, 2017, **33**, 124-129.
- 3. Z. Li, J. Zhang, B. Guan, D. Wang, L. M. Liu and X. W. Lou, *Nat. commun.*, 2016, **7**, 13065.
- 4. F. Pei, T. An, J. Zang, X. Zhao, X. Fang, M. Zheng, Q. Dong and N. Zheng, *Adv. Energy Mater.*, 2016, **6**, 1502539.
- 5. Z. Li, J. Zhang and X. W. Lou, Angew. Chem. Int. Ed., 2015, 54, 12886-12890.
- X. Wang, G. Li, J. Li, Y. Zhang, A. Wook, A. Yu and Z. Chen, *Energy Environ. Sci.*, 2016, 9, 2533-2538.
- 7. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu and Y. Cui, *Nat. commun.*, 2013, **4**, 1331.
- 8. G. Zhou, Y. Zhao and A. Manthiram, *Adv. Energy Mater.*, 2015, 5, 1402263.