Electronic Supporting Information

Understanding the Stability of Mixed A-Cation Lead Iodide Perovskites

S1 – Experimental
S2 – X-Ray Diffraction Patterns
S3 – Kinetic Analysis of MA$_{0.4}$FA$_{0.6}$PbI$_3$ and MA$_{0.3}$FA$_{0.7}$PbI$_3$
S4 – Decomposition Energies
S5 – Film Morphology
S1 Experimental

Formamidinium iodide was purchased from Dysol, with all other reagents purchased from Sigma Aldrich. Solvents were purchased from Alfa Aesar with purities > 99%.

Precursor synthesis of methylammonium iodide (MAI) was carried out. 16.620ml of hydroiodic acid (57 wt %) was stabilised using 1.5 wt % H$_3$PO$_2$ and then added dropwise to 10.891ml of methylamine (40 wt % in H$_2$O) in an ice bath under stirring. After 1 hour the H$_2$O was removed through rotary evaporation. The resulting MAI was then recrystallised using ethanol and oven dried overnight.

Thin film deposition of MA$_{1-x}$FA$_x$PbI$_3$ perovskites was achieved through spin coating on clean glass substrates. The glass substrates were cleaned sequentially using liquid detergent, acetone and ethanol in an ultrasonic bath for 10 minutes. MAI and FAI were weighed such that the MAI:FAI ratio varied from 1 to 0 in increments of 0.1 before being dissolved with PbI$_2$ in DMF (0.6 molar). 100 µL of the resulting solutions were deposited onto the clean glass substrates under a dry atmosphere and spin coated at 4000 rpm for 30 s. The films were then transferred to a hot plate and annealed at 110 °C for 30 minutes.

Powder X-ray diffraction was used to characterise the MA$_{1-x}$FA$_x$PbI$_3$ thin films. A Bruker Advance D8 X-ray diffractometer with a Cu-Kα radiation was used. The diffraction angle was scanned from 10° to 50° using a step size of 0.016°.

Scanning electron microscopy (SEM) images were taken of MA$_{1-x}$FA$_x$PbI$_3$ (x = 0.3, 0.5, 0.6, 0.7) using a Jeol JSM-6480LV SEM. Secondary electron images of the films were taken using an accelerating voltage of 5KV at magnifications of x500, x1000 and x2500.

Ab initio simulation techniques based on density functional theory (DFT) (employing the code VASP58 code) were used to examine the energetics of the mixed MA$_{1-x}$FA$_x$PbI$_3$ system. A cell of 3XX atoms of the pseudo-cubic unit cells were modelled; a plane wave cut off energy of 520 eV, k-point sampling at the gamma point, PAW pseudopotentials and a GGA+VdW (OptB86b) exchange-correlation functional were employed. For structure relaxation, forces were converged to less than 0.01 eV/Å-1. The simulations reproduce the experimental crystal structures of MAPI and FAPI in good agreement with diffraction data.9,12

S2 – X-Ray Diffraction Patterns

X-ray diffraction patterns of thin films MA$_{1-x}$FA$_x$PbI$_3$. The presence of PbI$_2$ was characterised through the presence of the (001) reflection centered at 2θ = 12.7°. Formation of PbI$_2$ is suppressed with increasing FA content, until x = 0.6, where only trace amounts of PbI$_2$ are observed after 10 days. Multiple films of x = 0.6 were synthesised, of which one repeat is shown in Fig.S2.1. It was observed that even trace amounts of PbI$_2$ present in as-made films caused rapid degradation of the films (See S3 for kinetic analysis). Therefore is was concluded that pristine, phase pure perovskite films are required to prevent degradation into PbI$_2$ and precursor salts.

For compositions where x ≥ 0.7 the hexagonal δ-FAPI peak is observed immediately after deposition. Formation of the δ-phase is suppressed at x = 0.7 due to MA; however this is overcome as x ≥ 0.8 where the intensity of the δ-phase peak surpasses the strongest perovskite reflection, the (100) peak centred around 2θ = 14°. Films of x ≥ 0.8 were seen to transform into the yellow δ-phase within minutes of exposure to air.
Fig.S2.1 X-ray Diffraction patterns of the MA$_{1-x}$FA$_x$PbI$_3$, 0 ≤ x ≤ 0.8, thin films. Patterns were measured immediately after synthesis (bottom trace) and then through 1, 3, 5, 7 and 10 days (top trace).
S3 – Kinetic Analysis of MA$_{0.4}$FA$_{0.6}$PbI$_3$ and MA$_{0.3}$FA$_{0.7}$PbI$_3$

The Johnson-Mehl-Avrami-Kolmogorov (JMAK, equation 1) was used to model the crystallisation of PbI$_2$ in the thin films of MA$_{1-x}$FA$_x$PbI$_3$, 0 ≤ x ≤ 0.6. In which the phase fraction of PbI$_2$ present was approximated through the peak area of the (001) PbI$_2$ reflection in PXD patterns.

It was observed that for phase pure MA$_{0.4}$FA$_{0.6}$PbI$_3$ only trace amounts of PbI$_2$ were present after 10 days stored under air in the dark. However, the presence of PbI$_2$ in as made films caused rapid degradation. Fig.S3.1 shows three repeats of the 10 day degradation study for x = 0.6 films. Each as made film contained small quantities of PbI$_2$ which accelerated degradation, however the rate of this decomposition remained lower than the MA-rich phases. The more PbI$_2$ present in the as made films the faster the initial decomposition.

PbI$_2$ was not modelled this way for x ≥ 0.7 due to the competing degradation pathway to the δ-FAPI phase. However the kinetics of formation of the δ-FAPI phase was briefly investigated and also found to follow the JMAK model, using the peak area under the δ-FAPI reflection centred around 2θ = 11.7° as an approximation for phase fraction.

Fig.S3.1 Kinetic plots for the growth of PbI$_2$ in MA$_{0.4}$FA$_{0.6}$PbI$_3$ where t is time in hours and A the peak area of the (001) PbI$_2$ reflection. As made films contained small quantities of PbI$_2$ accelerating film decomposition.
Fig. S3.1 Kinetic plot for the growth of the δ-FAPI phase in MA$_{0.3}$FA$_{0.7}$PbI$_3$ where t is time in hours and A the peak area of the δ-FAPI reflection centred around $2\theta = 11.7^\circ$. The linear relationship observed suggests the kinetics of δ-FAPI formation also follows the JMAK model.
S4 – Decomposition Energies

The degradation energies (ΔE_{deg}) for the pathways shown in Fig. 4 were calculated for $\text{MA}_{1-x}\text{FA}_x\text{PbI}_3$ in the full composition range $0 < x < 1$. In this case:

Reaction 1: $\text{MA}_{1-x}\text{FA}_x\text{PbI}_3 \rightarrow (1-x)\text{MAI} + x\text{FAI} + \text{PbI}_2$

Reaction 2: $\text{MA}_{1-x}\text{FA}_x\text{PbI}_3 \rightarrow (1-x)(\text{MAI} + \text{PbI}_2) + x(\delta - \text{FAPbI}_3)$.

Alternate starting conditions were assumed on either the cubic, high order or low order structure of FA\text{PbI}, the tetragonal structure of MAPI or a large disordered cell consisting of 64 formula units. MA and FA were then substituted into these cells in the desired ratios. ΔE_{deg} was plotted against $\text{MA}_{1-x}\text{FA}_x\text{PbI}_3$ for each of the different starting conditions (Fig. S4.1).

![Fig. S4.1](image_url) Calculated energies for the decomposition reaction 1 and 2 for $\text{MA}_{1-x}\text{FA}_x\text{PbI}_3$. The dotted lines act as a guide to the eye.
S5 – Film Morphology

Scanning electron microscopy (SEM) was used to obtain images of thin films of MA$_{1-x}$FA$_x$PbI$_3$ ($x = 0.3, 0.5, 0.6, 0.7$) to compare differences in film morphology. Crystallite size was measured to increase from an average of 3µm to 3.5µm for $x = 0.3$ and 0.6 respectively. However a doubling to 6µm was observed in $x = 0.7$ films, coinciding with the presence of the hexagonal (non-perovskite) δ-phase. The small variation in crystallite size for $x < 0.7$ was judged not to significantly affect film degradation.

Fig.S5.1 SEM images MA$_{1-x}$FA$_x$PbI$_3$ ($x = 0.3, 0.5, 0.6, 0.7$) thin films taken at a magnification of x2500

Fig.S5.2 SEM images MA$_{1-x}$FA$_x$PbI$_3$ ($x = 0.3, 0.5, 0.6, 0.7$) thin films taken at a magnification of x1000
Fig. S5.3 SEM images MA$_{1-x}$FA$_x$Pbl$_3$ ($x = 0.3, 0.5, 0.6, 0.7$) thin films taken at a magnification of x500