Supporting material:

Oxygen Vacancies Induced Exciton Dissociation of Flexible

BiOCI Nanosheets for Effective Photocatalytic CO₂ Conversion

Zhaoyu Ma,^{†1} Penghui Li,^{‡&1} Liqun Ye,^{†‡*} Ying Zhou,^{‡&*} Fengyun Su,[†] Chenghua Ding,[†] Haiquan Xie,[†] Yang Bai,[‡] Po Keung Wong,[#]

⁺ Engineering Technology Research Center of Henan Province for Solar Catalysis; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province; Nanyang Normal University, Nanyang 473061, China.

‡ State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

& The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China.

School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China.

*Correspondence author:

Nanyang Normal University

E-mail: <u>yeliquny@163.com</u>

Southwest Petroleum University

E-mail:<u>yzhou@swpu.edu.cn</u>

¹The authors contributed equally.

1. Experimental

1.1 Synthesis

First, 0.002 mol Bi(NO₃)₃5H₂O were dissolved into 40 mL glycerol. Then dissolve 0.0015molKCl in the previous solution. The suspension was transferred into Teflon-lined stainless steel autoclaves (50 mL), and then the oven was kept at 160 °C for 17 h. After reaction, the complex precursors precipitate was obtained by centrifugation, and then washed with ethanol and distilled water several times. Finally, it was dried at 60 °C in air.

1.2 Characterization

The phase and crystal structure of the photocatalysts were obtained by X-ray diffraction (XRD) on a Bruker D8 diffractometer using Cu Ka radiation, the scanning range was from 5° to 65° with the 2 θ scan rate of 6 min⁻¹. Morphology and chemical composition of the samples were analyzed using the Sigma Zeiss Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectrometry (EDS) with the accelerating voltage 20KV. The high-resolution transmission electron microscopy (HRTEM) images and element mapping were obtained by a JEOLJEM-2100F (UHR) field emission transmission electron microscopy. UV-vis diffuse reflectance spectroscopy (DRS) of samples were determined by a UV-vis spectrometer (Perkin Elmer, Lambda 850, BaSO₄ as a reference) and record on the within the scope of 200–800nm.X-ray photoelectron spectroscopy (XPS) of samples was characterized by a Thermos Scientific ESCALAB 250XI X-ray photoelectron spectrometer (Al Ka, 150 W, C1s 284.8 eV). A Quantachrome Autosorb-IQ automated gas sorption system was utilized to assessing the Brunauer-Emmett-Teller (BET) surface areas at 77K. Time-resolved PL spectra (340 nm excitation) recorded by a FLS980 Multifunction Steady State and Transient State Fluorescence Spectrometer (Edinburgh Instruments, room temperature). Transient absorption spectra recorded at 365 nm by a NTASTransient State absorption Spectrometer (Beijing Perfect light Technology Co., Ltd., China).

1.3 Photocatalytic reduction of CO₂

S-2

The photocatalytic reduction activities for CO₂ conversion was done in Labsolar-III AG (Beijing Perfect light Technology Co., Ltd., China) closed gas system. The volume of the reaction system was 350 mL and 1.3 g NaHCO₃ was added firstly. Then 0.05g photocatalyst in the ultrasonic cleaning apparatus dissolved in an appropriate amount of water, then the resulting suspension transfer on a watch-glass with an area of 28.26 cm² paving, the watch-glass is then placed in a vacuum drying oven at a temperature of 60 degrees. About 30 minutes of drying, the photocatalyst becomes very thin film completely covered in glass, and then the watch-glass was put in mid-air of the reaction cell. Prior to the light irradiation, the above system was thoroughly vacuum-treated to remove the air completely, and then 10 mL 4 M H₂SO₄ was injected into the reactor to react with NaHCO₃. Then, 1 atm CO_2 gas was achieved. After that, the reactor was irradiated from the top by a 300 W high pressure xenon lamp (PLS-SXE300, Beijing Perfect light Technology Co., Ltd., China), and the photoreaction temperature was kept at 20 C by DC-0506 low-temperature thermostat bath (Shanghai Sunny Hengping Scientific Instrument Co., Ltd., China). During the irradiation, 1 mL of gas was taken from the reaction cell for subsequent qualitative analysis by GC9790II gas chromatography (GC, Zhejiang Fuli Analytical Instrument Co., Ltd., China) equipped with a flame ionization detector (FID, GDX-01 columns). The quantification of the production yield was based on a calibration curve. The outlet gases were determined to be CO, CH₄ and CO₂.

1.4 Light to carbon monoxide (LTCO) conversion efficiency calculations

The "light -to-carbon monoxide" conversion efficiency (LTCO) was determined to be: LTCO = E_F/E_{light} = (energy of CO₂ conversion into CO and O₂)/(light energy irradiating the reaction cell).

The light energy conversion was evaluated by using 300 W Xenon lamp as the light source 1 h of illumination, the surface was about 4 cm²

UV-Vis: 0.57W cm⁻²

So, $E_{light} = T^*W = 3600 X W J$.

 $E_{\rm F}$ was the energy generated by CO_2 conversion into CO and O_2

 $E_F = \Delta G^{\Theta*} M_{CO} = 2.57^* 10^5 \text{ X } M_{CO} \text{ J}$

light	sample	M _{co} (μ mol)	E _F (J)	E _{light} (J)	LTCO (10 ⁻⁶)
UV-Vis	BOC-OV	0.844	0.217	0200	26.5
	BOC	0.2945	0.0755		9

Table S1 LTCO conversion efficiency calculation data.

1.5 Photoelectrochemical measurements

Transient photocurrent response and electrochemical impedance of the samples were measured in a three-electrode quartz cell containing Na₂SO₄ (0.1 M) electrolyte solution and using a CHI630E electrochemical working station (CHI Instruments, Shanghai, China). Samples were located on a fluorinated-tin-oxide (FTO) conducting glass as the working electrode. Ag/AgCl and Pt played the role of reference and counter electrodes, respectively.

1.6 In-situ DRIFTS measurement

During the in-situ DRIFTS measurement, the sample was filled into the in-situ IR cell, and CO₂ and H₂O gases were introduced into the cell and LED monochromatic light of 365 nm irradiated on the sample through the CaF₂ window of the cell. Before the measurement, the sample was degassed at 423 K for 4 h. The baseline was obtained after adsorption equilibrium of CO₂ on the sample for 1 h.

2 Theoretical calculations

The first-principles density functional theory plus dispersion method implemented in the DMol³ package was used for all the calculations of the study.[1,2] All the structures are fully optimized using the generalized gradient approximation (GGA),treated by the Perdew–Burke–Ernzerhof exchange–correlationpotential (PBE) with long range dispersion correction via TS's scheme.[3] An all electron double numerical atomic orbital augmented by d-polarization functions (DNPs) is used as the basis set. The vacuum between the BiOCI monolayers is 15 Å which is large enough to avoid interactions between periodic images. Geometry optimizations were performed with convergence thresholds of 0.004ha Å⁻¹ on the gradient, 0.005 Å on the displacement, and 2×10^{-5} ha on the energy. The self-consistent field (SCF) procedure was used with a 1.0^{-5} ha value. The Brillouin zones are sampled by $5 \times 5 \times$ 1k-points using the Monkhorst–Pack scheme.[4] The bulk structure of BiOCI belongs to the tetragonal space group P4/nmm (NO 129).[5] The optimized lattice constant of the BiOCI monolayer is 3.89 Å, and a 3 × 3supercell of the BiOCI (001) monolayer with a dimension of 11.67 × 11.67 × 22.37 Å³ was used for CO₂reduction. Meanwhile, to investigate the effect of oxygen vacancy for BiOCI, one of oxygen atoms was removed to build up possible oxygen vacancy in the BiOCI system. The LST/QST tools were employed to calculate the activation barrier energies (Ea) and transition states (TS) of CO₂reduction paths.[6]

(1). B.Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 1990,92, 508-517;

(2). B.Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys., 2000,113, 7756-7764.

(3). J. P.Perdew, K. Burke, M.Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev.Lett., 1996,77 (18), 3865-3868.

(4). D. J.Chadi, M. L. Cohen, Special Points in the Brillouin Zone, Phys. Rev. B, 1973,8, 5747-5753.

(5). R.W.G. Wyckoff, Crystal Structures, second ed., vol. 1, Wiley, New York, 1963

(6). T. A.Halgren, W. N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chem. Phys.Lett., 1977,49, 225-232.

Figure S1 Atomic structure of BOC-OV and BOC.

Figure S2 XPS of BOC-OV and BOC.

Figure S4 Cycling test of photocatalytic CO₂ reduction on BOC-OV.

4 -

Figure S5 CO₂ adsorption performance of BOC-OV and BOC.

Figure S6 (a) Nitrogen adsorption-desorption isotherms and (b) corresponding pore size distribution curves of BOC-OV and BOC.

Figure S7 In-situ DRIFT spectra of CO₂ reduction on BOC-OV (a) and BOC (b).

Figure S8 Possible schematic mechanisms for CO₂ reduction on BOC-OV.

Figure S9 The optimized geometries of CH_2OH^* hydrogenation to CH_3OH^* : reactant (a), transition state (b) and product (c).

Figure S10 Potential energy profiles of the direct dissociation of CO_2 to CO. Table S2 Assigned surface species of observed wavenumbers on BOC-OV and BOC.

	Assignment	Wavenumber (cm ⁻¹)		Def
species		BOC-OV	BOC	Kei.
Terminal Oll	–ОН	3729/3702/	3729/3702/	3800-3600 ^{1,2}
Terminal–OH		3626/3599	3626/3599	
CO ₂		2360/2337	2360/2337	2361 ³
Bidentate carbonate	v (CO)	1058		1059 ⁴
Carbonato	v _{as} (CO ₃)	1318/1058	1314/1309	13214/13155/
Carbonate				1055 ⁴
Picarbonato		1645/1480/	1645	1645 ⁶ /1481 ⁴ /
DicarDOllate		1437	1045	1438 ⁶

Didentatoformate	δ (CH) + v_{as} (OCO)		2963	2965 ⁷ ,2967 ⁸
Bidentaterormate	ν(CH)	2872		2872 ⁷ ,2880 ⁸
Formato	v _{as} (OCO)	1558	1561	1570-1560 ⁹
Formate	v(CO)		1698	1698-1701 ¹⁰
CH₃OH	v(CH₃)		2851/2923	2954 ¹¹ /2849 ⁷
CH₃OH			1029	103012
Methoxy	v(CO)	1124		11247

(1) B. Bachiller-Baeza, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Interaction of Carbon Dioxide with the Surface of Zirconia Polymorphs, Langmuir, 1998, 14, 3556-3564.

(2) A. A. Tsyganenko, V. N. Filimonov, Infrared Spectra of Surface Hydroxyl Groups and Crystalline Structure of Oxides, Spectroscopy Lett., 1972, 5, 477-487.

(3) L. F. Liotta, G. A. Martin, G. Deganello, The Influence of Alkali Metal Ions in the Chemisorption of CO and CO₂on Supported Palladium Catalysts: A Fourier Transform Infrared Spectroscopic Study, J.Catal., 1996, 164, 322-333.

(4) W. Wu, K. Bhattacharyya, K. Gray, E. Weitz, Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study, J. Phys. Chem. C,2013, 117, 20643-20655.

(5) M.-T. Chen, C.-F. Lien, L.-F. Liao; J.-L. Lin, In-Situ FTIR Study of Adsorption and Photoreactions of CH₂Cl₂ on Powdered TiO₂, J. Phys. Chem. B, 2003, 107, 3837-3843.

(6) J. Szanyi, J. H. Kwak,. Dissecting the steps of CO₂ reduction: 1. The interaction of CO and CO₂ with [gamma]-Al₂O₃: an in situ FTIR study, Phys. Chem. Chem. Phys., 2014, 16, 15117-15125.

(7) S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, Optimizing Binding Energies of Key Intermediates for CO₂ Hydrogenation to Methanol over Oxide-Supported Copper, J. Am. Chem. Soc.,2016, 138, 12440-12450.

(8) D. Bianchi, T. Chafik, M. Khalfallah, S. J. Teichner, Intermediate species on zirconia supported methanol aerogel catalysts, Appl. Catal. A: Gen., 1993, 105, 223-249.

(9) P. O. Graf, D. J. M. de Vlieger, B. L. Mojet, L. Lefferts, New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO₂, J. Catal., 2009, 262, 181-187.

(10) M. El-Maazawi, A. N. Finken, A. B. Nair, V. H. Grassian, Adsorption and Photocatalytic Oxidation of Acetone on TiO₂: An in Situ Transmission FT-IR Study, J. Catal., 2000, 191, 138-146.

S-10

(11) J. Szanyi, J. H. Kwak, Photo-catalytic oxidation of acetone on a TiO₂ powder: An in situ FTIR investigation, J. Mol. Catal. A: Chem., 2015, 406, 213-223.

(12) M. Manzoli, A. Chiorino, F. Boccuzzi, Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO₂, Appl. Catal.
B: Environ., 2005, 57, 201-209.