Supporting Information (SI)

Nitrogen-Rich Salts Based on the Combination of 1,2,4-Triazole and 1,2,3-Triazole Rings: A Facile Strategy for Fine Tuning Energetic Properties

Zhen Xu,^a Guangbin Cheng,^a Shunguan Zhu,^a Qiuhan Lin^b and Hongwei Yang*^a

^aSchool of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China. Email: hyang@mail.njust.edu.cn ^bState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, , Beijing 100081, P.R. China.

Table of contents

1.	Computational details1
2.	Crystallographic data for compounds 2 ·acetonitrile, 3 and salts 8 and 173
3.	X-ray structural analysis of compounds 2·acetonitrile, 3 and salts 8 and 174
4.	¹ H and ¹³ C NMR spectra of the title compounds:11
5.	DSC curves of the title compounds

1. Computational Details

Calculations were performed by using the Gaussian 09 suite of programs. The geometric optimization of all the structures and frequency analyses for calculation of heats of formation was carried out by using B3-LYP functional^[1] with 6-311+G** basis set,^[2] All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. The heats of formation (HOF) of the title compounds were computed through appropriate isodesmic reactions (Scheme S1 and S2). The isodesmic reaction processes, i.e., the number of each kind of formal bond is conserved, are used with application of the bond separation reaction (BSR) rules. The molecule is broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions at 298 K can be expressed as

$$\Delta H_{298} = \sum \Delta_{\rm f} H_{\rm P} - \sum \Delta_{\rm f} H_{\rm R} \ (1)$$

where $\Delta_f H_R$ and $\Delta_f H_P$ are the HOF of reactants and products at 298 K, respectively, and ΔH_{298} can be calculated using the following expression:

 $\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta HT + \Delta nRT (2)$

where E_0 is the change in total energy between the products and the reactants at 0 K; ΔZPE is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K;

 Δ HT is thermal correction from 0 to 298 K. The $\Delta(PV)$ value in eq (2) is the *PV* work term. It equals ΔnRT for the reactions of ideal gas. For the isodesmic reactions, $\Box n = 0$, so $\Delta(PV) = 0$. On the left side of Eq. (1), apart from target compound, all the others are called reference compounds. The HOF of reference compounds are available either from the experiments^[3-5] or from the high

level computing like CBS-4M.

Scheme S1. Isodesmic and tautomeric reactions for 1-4 to calculate the HOF.

Scheme S2. Isodesmic and tautomeric reactions for 4-nitro-5-(5-nitramino-1,2,4-triazol-3-yl)-1,2,3-triazolate and 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-1,2,3-triazolate ions to compute the HOF.

For energetic salts, the solid-phase heat of formation is calculated on the basis of a Born-Haber energy cycle (Scheme S3).^[6] The number is simplified by equation 3:

Scheme S3. Born-Haber Cycle for the Formation of energetic salts.

 $\Delta H_{\rm f}^{\circ}(\text{salt, 298 K}) = \Delta H_{\rm f}^{\circ}(\text{cation, 298K}) + \Delta H_{\rm f}^{\circ}(\text{anion, 298K}) - \Delta H_{\rm L} \qquad (3)$ in which $\Delta H_{\rm L}$ can be predicted by using the formula suggested by Jenkins, et al.^[7](equation 4): $\Delta H_{\rm L} = U_{\rm pot} + [p(n_{\rm M}/2 - 2) + q(n_{\rm X}/2 - 2)]RT \qquad (4)$ In this equation, $n_{\rm M}$ and $n_{\rm X}$ depend on the nature of the ions Mp^+ and Xq^- , respectively. The equation for lattice potential energy $U_{\rm pot}(\text{equation 5})$ has the form:^[6] $U_{\rm POT} [\text{kJ mol}^{-1}] = \gamma (\rho_{\rm m}/M_{\rm m})^{1/3} + \delta \qquad (5)$

where ρ_m [gcm⁻³] is the density of the salt, M_m is the chemical formula mass of the ionic material, and values for g and the coefficients γ (kJmol⁻¹cm) and δ (kJmol⁻¹) are assigned literature values.^[7]

Compound	\mathbf{E}_{0}^{a}	\mathbf{ZPE}^{b}	$\mathbf{H}_{\mathbf{T}}^{c}$	\mathbf{HOF}^{d}
1	-743.3289111	299.64	32.81	520.81
2	-947.8585794	306.23	38.71	593.29
3	-892.4904784	263.3	35.43	559.59
4	-1484.216735	487.38	61.04	1206.92
2 anino (2-1)	-947.3712189	269.27	38.48	314.90
2 anino (2-2)	-946.773087	236.48	37.11	320.27
3 anino	-892.0067566	226.07	35.25	271.42
NH ₂ NO ₂	-261.1248168	98.79	12.39	-3.9
CH ₃ NO ₂	-245.0915559	124.93	11.6	-80.8
CH ₃ NH ₂	-95.8938402	160.78	11.64	-22.5
NHNO ₂	-259.936099	65.95	11.23	-84.00
NH=NH	-110.6795238	70.35	10.03	194.97
NNH N=∕	-242.3203873	150.39	12.06	192.7
N N H	-242.3001706	150.23	12.05	233.71
N N N	-241.74	113.4	11.75	146.54

 Table S1. Ab initio computational values of small molecules used in isodesmic and tautomeric reactions.

^{*a*} Total energy calculated by B3LYP/6-31+G** method (a.u); ^{*b*} zero-point correction (kJ mol-1); ^{*c*} thermal correction to enthalpy (kJ mol-1); ^{*d*} heat of formation (kJ mol-1).

References:

- (a) A. D. Becke, J. Phys. Chem., 1993, 98, 5648; (b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- [2] P. C.Hariharan and J. A. Pople, Theoretica Chimica Acta, 1973, 28, 213.
- [3] D. R. Lide, CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), CRC Press/Taylor and Francis, Boca Raton, FL, 2007-2008.
- [4] N. Fischer, T. M. Klapötke and J. Stierstorfer, Z. Anorg. Allg. Chem., 2009, 635, 271.
- [5] Y.-H. Joo, J. H. Chung, S. G. Cho and E. M. Goh, New J. Chem., 2013, 37, 1180.
- [6] Jenkins, H. D. B.; Tudela, D.; Glasser, L. Inorg. Chem. 2002, 41, 2364-2367.

[7] H. D. B. Jenkins, D. Tudeal and L. Glasser, Inorg. Chem., 2002, 41, 2364-236

2. Crystallographic data for compounds 2 · acetonitrile, 3 and salts 8, 17.

Table S2. Crystallographic data for the compounds compounds 2 acetonitrile, 3 and salts 8 and 17.

	2·acetonitrile	3	8	17
Formula	$C_{6}H_{6}N_{10}O_{4}$	$C_4H_2N_8O_4$	$C_5H_8N_{12}O_4$	$C_{6}H_{13}N_{15}O_{4}$
Formula weight	282.21	226.14	300.23	359.31
Temperature	172(2) K	173(2) K	173(2) K	173(2) K
Crystal system	Triclinic	Orthorhombic	Monoclinic	Orthorhombic
Space group	<i>P</i> -1	$Pca2_{I}$	$P2_{I}/n$	$Pca2_{I}$
$\rho/g \text{ cm}^{-3}$	1.631	1.871	1.811	1.740

a/Å	4.5053(5)	12.9567(12)	15.6882(15)	45.902(5)
b/Å	10.4920(13)	6.4248(8)	4.8817(5)	3.5862(4)
c/Å	12.3817(17)	9.6417(10)	16.3623(17)	8.3346(9)
$lpha/^{\circ}$	83.323(4)	90	90	90
$eta/^{\circ}$	82.161(5)	90	118.492(4)	90
γ/°	85.293(4)	90	90	90
Goodness-of-fit on F ²	1.029	1.027	1.014	1.037
Final R indexes [I	$R_1 = 0.0592,$	$R_1 = 0.0498,$	$R_1 = 0.0447,$	$R_1 = 0.0584,$
>2σ (I)]	$wR_2 = 0.0901$	$wR_2 = 0.0801$	$wR_2 = 0.0804$	$wR_2 = 0.0817$
Final R indexes (all	$R_1 = 0.1252,$	$R_1 = 0.0964,$	$R_1 = 0.0940,$	$R_1 = 0.1317,$
data)	$wR_2 = 0.1064$	$wR_2 = 0.0926$	$wR_2 = 0.0955$	$wR_2 = 0.0981$
CCDC	1540318	1559066	1544500	1572217

X-ray Structural Analysis of compounds 2 · acetonitrile, 3 and salts 8, 17.

Table S3. Se	elected bond lengths	[Å] and angles [°] for compou	Ind 2. acetonitrile
C(1)-N(3)	1.326(4)	N(6)-C(3)-N(7)	105.6(3)
C(1)-C(2)	1.389(4)	N(6)-C(3)-N(8)	135.7(3)
C(1)-N(4)	1.441(4)	N(7)-C(3)-N(8)	118.7(3)
C(2)-N(1)	1.334(4)	N(5)-C(4)-N(7)	111.5(3)
C(2)-C(4)	1.463(4)	N(5)-C(4)-C(2)	126.3(3)
C(3)-N(6)	1.327(4)	N(7)-C(4)-C(2)	122.1(3)
C(3)-N(7)	1.350(4)	N(10)-C(5)-C(6)	179.3(5)
C(3)-N(8)	1.352(4)	C(5)-C(6)-H(6A)	109.5
C(4)-N(5)	1.299(4)	C(5)-C(6)-H(6B)	109.5
C(4)-N(7)	1.367(4)	H(6A)-C(6)-H(6B)	109.5
C(5)-N(10)	1.125(4)	C(5)-C(6)-H(6C)	109.5
C(5)-C(6)	1.458(5)	H(6A)-C(6)-H(6C)	109.5
C(6)-H(6A)	0.9800	H(6B)-C(6)-H(6C)	109.5
C(6)-H(6B)	0.9800	N(2)-N(1)-C(2)	103.0(3)
C(6)-H(6C)	0.9800	N(3)-N(2)-N(1)	116.9(3)
N(1)-N(2)	1.330(3)	N(3)-N(2)-H(2)	123(2)
N(2)-N(3)	1.310(4)	N(1)-N(2)-H(2)	120(2)
N(2)-H(2)	0.87(3)	N(2)-N(3)-C(1)	102.4(3)
N(4)-O(2)	1.218(3)	O(2)-N(4)-O(1)	125.6(3)
N(4)-O(1)	1.222(3)	O(2)-N(4)-C(1)	116.6(3)
N(5)-N(6)	1.384(3)	O(1)-N(4)-C(1)	117.8(3)
N(6)-H(6)	0.87(3)	C(4)-N(5)-N(6)	103.8(2)
N(7)-H(7)	0.87(3)	C(3)-N(6)-N(5)	111.8(2)
N(8)-N(9)	1.343(3)	C(3)-N(6)-H(6)	131(2)
N(9)-O(3)	1.234(3)	N(5)-N(6)-H(6)	117(2)

N(9)-O(4)	1.246(3)	C(3)-N(7)-C(4)	107.2(3)
N(3)-C(1)-C(2)	110.1(3)	C(3)-N(7)-H(7)	124.5(19)
N(3)-C(1)-N(4)	120.4(3)	C(4)-N(7)-H(7)	128.2(19)
C(2)-C(1)-N(4)	129.4(3)	N(9)-N(8)-C(3)	115.6(2)
N(1)-C(2)-C(1)	107.6(3)	O(3)-N(9)-O(4)	123.0(3)
N(1)-C(2)-C(4)	120.4(3)	O(3)-N(9)-N(8)	122.5(3)
C(1)-C(2)-C(4)	131.7(3)	O(4)-N(9)-N(8)	114.5(3)

Table S4.	Selected torsion	angles [°] for	r compound $2 \cdot a$	cetonitrile
1 abic 54.	beleeted torston		i compound 2 u	cetomin

	Tuble 5 II Selected torston u		nune
C2-N1-N2-N3	0.8(4)	C4-N7-C3-N6	0.7(3)
N2-N1-C2-C4	-175.3(3)	C4-N7-C3-N8	179.8(3)
N2-N1-C2-C1	-0.6(3)	C3-N7-C4-N5	-0.1(3)
N1-N2-N3-C1	-0.7(4)	C3-N7-C4-C2	178.8(3)
N2-N3-C1-C2	0.2(4)	N9-N8-C3-N7	-179.8(3)
N2-N3-C1-N4	177.5(3)	C3-N8-N9-O4	179.3(3)
O1-N4-C1-N3	-9.2(5)	C3-N8-N9-O3	0.8(4)
O2-N4-C1-C2	-10.5(5)	N9-N8-C3-N6	-1.1(5)
O1-N4-C1-C2	167.5(3)	N3-C1-C2-N1	0.3(4)
O2-N4-C1-N3	172.8(3)	N3-C1-C2-C4	174.1(3)
N6-N5-C4-C2	-179.4(3)	N4-C1-C2-N1	-176.7(3)
C4-N5-N6-C3	1.1(3)	N4-C1-C2-C4	-2.9(6)
N6-N5-C4-N7	-0.6(3)	N1-C2-C4-N5	-122.4(3)
N5-N6-C3-N7	-1.1(3)	N1-C2-C4-N7	58.9(4)
N5-N6-C3-N8	-180.0(3)	C1-C2-C4-N5	64.5(5)
C1-C2-C4-N7	-114.3(4)		

 Table S5. Hydrogen bonds present in compound 2 · acetonitrile

D-H•••A	d(D-H)/ Å	d(H•••A)∕ Å	d(D•••A)/ Å	<(DHA)/ °	comment
$N(2)-H(2)-O(4)^{i}$	0.87(3)	2.16(3)	2.911(4)	145(3)	inter
N(2)-H(2)•••N(1) ⁱⁱ	0.87(3)	2.44(4)	3.007(4)	124(3)	inter
N(6)-H(6)•••O(3)	0.87(3)	2.24(3)	2.598(3)	104(3)	intra
N(6)-H(6)•••N(10) ⁱⁱⁱ	0.87(3)	2.02(3)	2.884(4)	171(3)	inter
N(7)-H(7)•••N(8) ^{iv}	0.87(3)	2.00(3)	2.840(4)	163(3)	inter
C(6)-H(6A)•••O(2) ^v	0.98	2.48	3.077(5)	119	inter

i: -1+x,1+y,z; ii: 1-x,1-y,2-z; iii: 1+x,-1+y,z; iv: 1-x,-y,2-z; v: 2-x,1-y,1-z.

Table S6. S	Selected bond lengths	s [Å] and angles [°] for com	pound 3
C(1)-N(3)	1.330(6)	C(1)-C(2)-C(4)	135.6(5)
C(1)-C(2)	1.400(7)	N(6)-C(3)-N(7)	117.1(4)
C(1)-N(4)	1.435(7)	N(6)-C(3)-N(8)	121.7(4)
C(2)-N(1)	1.347(6)	N(7)-C(3)-N(8)	121.2(4)

C(2)-C(4)	1.456(7)	N(7)-C(4)-N(5)	109.9(4)
C(3)-N(6)	1.304(6)	N(7)-C(4)-C(2)	122.5(4)
C(3)-N(7)	1.344(6)	N(5)-C(4)-C(2)	127.6(4)
C(3)-N(8)	1.451(6)	N(2)-N(1)-C(2)	103.9(4)
C(4)-N(7)	1.326(6)	N(1)-N(2)-N(3)	116.8(4)
C(4)-N(5)	1.341(7)	N(1)-N(2)-H(2)	123(4)
N(1)-N(2)	1.323(6)	N(3)-N(2)-H(2)	120(4)
N(2)-N(3)	1.329(6)	N(2)-N(3)-C(1)	101.8(4)
N(2)-H(2)	0.82(5)	O(1)-N(4)-O(2)	124.8(4)
N(4)-O(1)	1.223(5)	O(1)-N(4)-C(1)	118.7(4)
N(4)-O(2)	1.231(5)	O(2)-N(4)-C(1)	116.5(4)
N(5)-N(6)	1.351(5)	C(4)-N(5)-N(6)	110.2(4)
N(5)-H(5)	0.84(5)	C(4)-N(5)-H(5)	132(4)
N(8)-O(3)	1.215(6)	N(6)-N(5)-H(5)	117(4)
N(8)-O(4)	1.224(5)	C(3)-N(6)-N(5)	101.2(4)
N(3)-C(1)-C(2)	111.0(5)	C(4)-N(7)-C(3)	101.5(4)
N(3)-C(1)-N(4)	120.0(4)	O(3)-N(8)-O(4)	125.8(5)
C(2)-C(1)-N(4)	129.1(4)	O(3)-N(8)-C(3)	117.1(5)
N(1)-C(2)-C(1)	106.5(4)	O(4)-N(8)-C(3)	117.0(4)
N(1)-C(2)-C(4)	117.8(4)		

Table S7. Selected torsion angles [⁶] for compound
--

	Table 57. Selected torsion	angles [] for compound 5	
C2-N1-N2-N3	0.2(6)	C4-N7-C3-N8	-179.2(4)
N2-N1-C2-C4	178.0(4)	C3-N7-C4-N5	-0.9(5)
N2-N1-C2-C1	0.2(5)	C4-N7-C3-N6	1.2(6)
N1-N2-N3-C1	-0.5(6)	O4-N8-C3-N6	173.7(4)
N2-N3-C1-N4	-177.7(4)	O4-N8-C3-N7	-5.9(7)
N2-N3-C1-C2	0.6(5)	O3-N8-C3-N7	172.8(5)
O1-N4-C1-N3	16.7(7)	O3-N8-C3-N6	-7.7(7)
O2-N4-C1-C2	18.1(8)	N3-C1-C2-C4	-177.7(5)
O1-N4-C1-C2	-161.3(5)	N3-C1-C2-N1	-0.5(6)
O2-N4-C1-N3	-163.9(5)	N4-C1-C2-C4	0.4(10)
N6-N5-C4-N7	0.5(6)	N4-C1-C2-N1	177.6(5)
C4-N5-N6-C3	0.2(5)	C1-C2-C4-N5	-21.8(10)
N6-N5-C4-C2	-177.5(5)	C1-C2-C4-N7	160.5(6)
N5-N6-C3-N7	-0.9(5)	N1-C2-C4-N7	-16.5(7)
N5-N6-C3-N8	179.5(4)	N1-C2-C4-N5	161.3(5)
C3-N7-C4-C2	177.2(5)		

 Table S8. Hydrogen bonds present in compound 3

D-H•••A	d(D-H)/ Å	d(H•••A)∕ Å	d(D•••A)/ Å	<(DHA)/ °	comment
N(2)-H(2)•••N(6)i	0.82(6)	2.19(5)	2.966(6)	157(5)	inter
N(5)-H(5)•••O(2)	0.84(6)	2.23(5)	2.776(5)	123(5)	intra
N(5)-H(5)•••N(7)ii	0.84(6)	2.04(6)	2.782(5)	148(5)	inter

i: 3/2-x,-1+y,1/2+z; ii: 3/2-x,y,-1/2+z.

Table S9. Selected bond lengths [Å] and angles [°] for compound 8						
C(1)-N(2)	1.319(3)	N(8)-C(3)-C(4)	109.5(2)			
C(1)-N(3)	1.350(3)	N(8)-C(3)-N(9)	119.1(2)			
C(1)-N(4)	1.352(3)	C(4)-C(3)-N(9)	131.5(2)			
C(2)-N(1)	1.308(3)	N(6)-C(4)-C(3)	106.3(2)			
C(2)-N(3)	1.362(3)	N(6)-C(4)-C(2)	118.4(2)			
C(2)-C(4)	1.456(3)	C(3)-C(4)-C(2)	135.3(2)			
C(3)-N(8)	1.345(3)	N(10)-C(5)-N(11)	120.3(3)			
C(3)-C(4)	1.384(4)	N(10)-C(5)-N(12)	119.9(2)			
C(3)-N(9)	1.429(3)	N(11)-C(5)-N(12)	119.9(3)			
C(4)-N(6)	1.352(3)	C(2)-N(1)-N(2)	103.8(2)			
C(5)-N(10)	1.317(3)	C(1)-N(2)-N(1)	112.1(2)			
C(5)-N(11)	1.322(3)	C(1)-N(2)-H(2A)	125.1(18)			
C(5)-N(12)	1.327(4)	N(1)-N(2)-H(2A)	122.8(18)			
N(1)-N(2)	1.375(3)	C(1)-N(3)-C(2)	107.3(2)			
N(2)-H(2A)	0.86(3)	C(1)-N(3)-H(3A	122.6(19)			
N(3)-H(3A)	0.84(3)	C(2)-N(3)-H(3A	130.0(19)			
N(4)-N(5)	1.338(3)	N(5)-N(4)-C(1)	116.9(2)			
N(5)-O(1)	1.239(3)	O(1)-N(5)-O(2)	122.7(2)			
N(5)-O(2)	1.245(3)	O(1)-N(5)-N(4)	114.8(2)			
N(6)-N(7)	1.347(3)	O(2)-N(5)-N(4)	122.5(2)			
N(7)-N(8)	1.326(3)	N(7)-N(6)-C(4)	106.9(2)			
N(9)-O(3)	1.234(3)	N(8)-N(7)-N(6)	111.6(2)			
N(9)-O(4)	1.237(3)	N(7)-N(8)-C(3)	105.8(2)			
N(10)-H(10A)	0.879(16)	O(3)-N(9)-O(4)	123.0(2)			
N(10)-H(10B)	0.881(17)	O(3)-N(9)-C(3)	118.8(2)			
N(11)-H(11A)	0.865(17)	O(4)-N(9)-C(3)	118.2(2)			
N(11)-H(11B)	0.883(17)	C(5)-N(10)-H(10A)	118.5(19)			
N(12)-H(12A)	0.878(17)	C(5)-N(10)-H(10B)	119.5(18)			
N(12)-H(12B)	0.878(17)	H(10A)-N(10)-H(10B)	122(3)			
N(2)-C(1)-N(3)	105.7(2)	C(5)-N(11)-H(11A)	120(2)			
N(2)-C(1)-N(4)	120.7(2)	C(5)-N(11)-H(11B)	121.2(19)			
N(3)-C(1)-N(4)	133.7(3)	H(11A)-N(11)-H(11B)	119(3)			

N(1)-C(2)-N(3)	111.1(2)	C(5)-N(12)-H(12A)	119.9(19)
N(1)-C(2)-C(4)	123.2(2)	C(5)-N(12)-H(12B)	121.7(19)
N(3)-C(2)-C(4)	125.7(2)	H(12A)-N(12)-H(12B)	118(3)
Τ-	LL C10 Calantad ta		
		NG N7 N8 C2	0.7(2)
N2 N1 C2 N2	-1.0(3)	$\frac{1}{10} \frac{1}{10} \frac$	-0.7(3)
N2 N1 C2 C4	0.4(3)	N7-N9-C3-C4	0.3(3)
N2-N1-C2-C4	-179.0(2)	N/-IN8-C3-IN9	-1/9.7(2)
NI-N2-CI-N4	1/9.9(2)	03-N9-C3-N8	1/4.0(2)
N1-N2-C1-N3	1.1(3)	O4-N9-C3-C4	174.4(3)
C2-N3-C1-N4	-179.3(3)	O3-N9-C3-C4	-6.0(4)
C1-N3-C2-C4	179.6(3)	O4-N9-C3-N8	-5.7(4)
C2-N3-C1-N2	-0.8(3)	N3-C2-C4-C3	-1.1(5)
C1-N3-C2-N1	0.2(3)	N3-C2-C4-N6	177.3(3)
C1-N4-N5-O2	-3.5(4)	N1-C2-C4-C3	178.2(3)
N5-N4-C1-N3	2.1(4)	N1-C2-C4-N6	-3.5(4)
C1-N4-N5-O1	176.4(2)	N8-C3-C4-N6	0.2(3)
N5-N4-C1-N2	-176.3(2)	N9-C3-C4-C2	-1.4(5)
C4-N6-N7-N8	0.8(3)	N8-C3-C4-C2	178.7(3)
N7-N6-C4-C3	-0.6(3)	N9-C3-C4-N6	-179.9(3)
N7-N6-C4-C2	-179.4(2)		

Table S11.	Hydrogen	bonds	present in	compound 8
	, iii , ai o goii	0 0 mail	present m	eompound o

D-H•••A	d(D-H)/ Å	d(H•••A)∕ Å	d(D•••A)/ Å	<(DHA)/ °	comment
$N(2)$ - $H(2A)$ ••• $N(4)^{i}$	0.86(3)	1.99(3)	2.821(4)	162(3)	inter
N(3)-H(3A)•••O(2)	0.85(3)	2.11(3)	2.600(3)	116(3)	intra
N(3)-H(3A)•••O(3)	0.85(3)	2.11(3)	2.752(3)	132(3)	intra
N(10)-H(10A)•••(7) ⁱⁱ	0.88(3)	2.08(3)	2.943(4)	164(3)	inter
N(10)-H(10B)•••N(6)	0.88(3)	2.08(3)	2.959(3)	174(2)	intra
N(11)-H(11A)•••O(1) ⁱ	0.87(3)	2.39(3)	3.027(4)	131(2)	inter
N(11)-H(11A)•••O(4) ⁱⁱⁱ	0.87(3)	2.58(3)	3.282(3)	139(2)	inter
N(11)-H(11A)•••N(8) ⁱⁱⁱ	0.87(3)	2.62(3)	3.262(4)	132(2)	inter
N(11)-H(11B)•••N(1)	0.88(3)	2.12(3)	2.989(4)	169(3)	intra
N(12)-H(12A)•••O(4) ⁱⁱⁱ	0.88(3)	2.32(3)	3.106(4)	150(2)	inter
N(12)-H(12B)•••N(7) ⁱⁱ	0.87(3)	2.58(3)	3.286(4)	139(2)	inter
N(12)-H(12B)•••N(8) ⁱⁱ	0.87(3)	2.52(3)	3.376(4)	168(2)	inter

i: -x,1-y,1-z; ii: 1-x,-y,1-z; iii: -1/2+x,1/2-y,-1/2+z.

Table S12. Selected bond lengths [Å] and angles [°] for compound 17

C(1)-N(3)	1.341(7)	N(7)-C(3)-N(8)	119.0(5)	
C(1)-C(2)	1.383(7)	N(6)-C(3)-N(8)	131.3(5)	

C(1)-N(4)	1.441(7)	N(5)-C(4)-N(7)	115.1(5)
C(2)-N(1)	1.353(6)	N(5)-C(4)-C(2)	120.2(5)
C(2)-C(4)	1.467(8)	N(7)-C(4)-C(2)	124.6(5)
C(3)-N(7)	1.339(7)	N(11)-C(5)-N(12)	121.0(5)
C(3)-N(6)	1.338(7)	N(11)-C(5)-N(10)	120.4(5)
C(3)-N(8)	1.380(6)	N(12)-C(5)-N(10)	118.7(5)
C(4)-N(5)	1.314(7)	N(15)-C(6)-N(13)	120.8(5)
C(4)-N(7)	1.368(6)	N(15)-C(6)-N(14)	120.0(5)
C(5)-N(11)	1.310(7)	N(13)-C(6)-N(14)	119.2(5)
C(5)-N(12)	1.320(7)	C(2)-N(1)-N(2)	107.8(5)
C(5)-N(10)	1.329(7)	N(3)-N(2)-N(1)	110.9(4)
C(6)-N(15)	1.307(7)	N(2)-N(3)-C(1)	105.1(4)
C(6)-N(13)	1.315(7)	O(2)-N(4)-O(1)	124.5(5)
C(6)-N(14)	1.339(7)	O(2)-N(4)-C(1)	117.5(5)
N(1)-N(2)	1.355(6)	O(1)-N(4)-C(1)	117.9(5)
N(2)-N(3)	1.341(6)	C(4)-N(5)-N(6)	102.4(4)
N(4)-O(2)	1.217(6)	C(3)-N(6)-N(5)	110.4(5)
N(4)-O(1)	1.220(6)	C(3)-N(6)-H(6A)	124(4)
N(5)-N(6)	1.364(6)	N(5)-N(6)-H(6A)	125(4)
N(6)-H(6A)	0.86(6)	C(3)-N(7)-C(4)	102.4(5)
N(8)-N(9)	1.314(6)	N(9)-N(8)-C(3)	116.1(5)
N(9)-O(4)	1.258(6)	O(4)-N(9)-O(3)	119.7(5)
N(9)-O(3)	1.272(5)	O(4)-N(9)-N(8)	124.2(5)
N(10)-H(10A)	0.91(2)	O(3)-N(9)-N(8)	116.0(5)
N(10)-H(10B)	0.92(2)	C(5)-N(10)-H(10A)	122(3)
N(11)-H(11A)	0.90(2)	C(5)-N(10)-H(10B)	116(3)
N(11)-H(11B)	0.91(2)	H(10A)-N(10)-H(10B)	119(4)
N(12)-H(12A)	0.92(2)	C(5)-N(11)-H(11A)	118(3)
N(12)-H(12B)	0.90(2)	C(5)-N(11)-H(11B)	118(3)
N(13)-H(13A)	0.89(2)	H(11A)-N(11)-H(11B)	121(4)
N(13)-H(13B)	0.89(2)	C(5)-N(12)-H(12A)	120(3)
N(14)-H(14A)	0.90(2)	C(5)-N(12)-H(12B)	121(3)
N(14)-H(14B)	0.89(3)	H(12A)-N(12)-H(12B)	119(4)
N(15)-H(15A)	0.89(2)	C(6)-N(13)-H(13A)	118(3)
N(15)-H(15B)	0.89(2)	C(6)-N(13)-H(13B)	117(3)
N(3)-C(1)-C(2)	111.1(5)	H(13A)-N(13)-H(13B)	123(4)
N(3)-C(1)-N(4)	119.1(5)	C(6)-N(14)-H(14A)	116(4)
C(2)-C(1)-N(4)	129.8(5)	C(6)-N(14)-H(14B)	116(3)
N(1)-C(2)-C(1)	105.2(5)	H(14A)-N(14)-H(14B)	123(4)
N(1)-C(2)-C(4)	121.3(5)	C(6)-N(15)-H(15A)	116(3)
C(1)-C(2)-C(4)	133.5(5)	C(6)-N(15)-H(15B)	118(3)

N(7)-C(3)-N(6)	109.7(5)	H(15A)-N(15)-H(15B)	125(4)
	Table S13. Selected torsi	on angles [°] for compound 17	
C2-N1-N2-N3	-0.1(6)	C4-N7-C3-N8	-179.0(5)
N2-N1-C2-C4	177.2(5)	C3-N7-C4-N5	0.3(7)
N2-N1-C2-C1	-0.6(6)	C3-N7-C4-C2	177.6(5)
N1-N2-N3-C1	0.8(6)	N9-N8-C3-N7	179.2(5)
N2-N3-C1-C2	-1.2(6)	C3-N8-N9-O4	0.2(8)
N2-N3-C1-N4	176.5(5)	C3-N8-N9-O3	179.6(5)
O1-N4-C1-N3	20.7(8)	N9-N8-C3-N6	1.2(9)
O2-N4-C1-C2	19.5(9)	N3-C1-C2-N1	1.1(6)
O1-N4-C1-C2	-162.1(6)	N3-C1-C2-C4	-176.3(6)
O2-N4-C1-N3	-157.7(5)	N4-C1-C2-N1	-176.3(5)
N6-N5-C4-C2	-177.3(5)	N4-C1-C2-C4	6.3(10)
C4-N5-N6-C3	-0.4(6)	N1-C2-C4-N5	23.8(8)
N6-N5-C4-N7	0.1(7)	N1-C2-C4-N7	-153.4(5)
N5-N6-C3-N7	0.6(7)	C1-C2-C4-N5	-159.1(6)
N5-N6-C3-N8	178.8(6)	C1-C2-C4-N7	23.7(10)
C4-N7-C3-N6	-0.5(6)		

 Table S14. Hydrogen bonds present in compound 17

D-H…A	d(D-H)/ Å	d(H···A)∕ Å	$d(D \cdots A) / Å$	<(DHA)/ °	comment
N(6)- $H(6A)$ ···O(1) ⁱ	0.86(6)	2.50(6)	3.149(7)	134(4)	inter
N(6)-H(6A)····O(4)	0.86(6)	2.05(5)	2.555(6)	117(4)'	intra
N(10)-H(10A)···O(3)	0.91(5)	2.30(4)	3.135(6)	153(4)	intra
N(10)-H(10A)···O(4)	0.91(5)	2.29(4)	3.096(6)	147(4)'	intra
N(10)-H(10B)…O(3) ⁱⁱ	0.92(3)	2.10(4)	2.929(6)	150(4)	inter
N(11)-H(11A)…O(3) ⁱⁱⁱ	0.90(2)	2.23(4)	3.039(6)	150(4)	inter
N(11)-H(11B)····N(8) ⁱ	0.91(4)	2.07(4)	2.975(7)	179(6)	inter
$N(12)-H(12A)\cdots N(7)^{i}$	0.92(4)	2.13(4)	3.045(7)	172(4)	inter
$N(12)$ - $H(12B)$ ···· $O(2)^{iv}$	0.90(4)	2.42(5)	3.058(6)	128(3)	inter
N(12)-H(12B)····O(4)	0.90(4)	2.34(4)	3.128(6)	145(4)'	intra
N(13)-H(13A)····N(1)	0.89(4)	2.08(4)	2.954(7)	168(4)	intra
$N(13)-H(13B)\cdots N(2)^{v}$	0.89(3)	2.44(4)	3.221(7)	147(5)	inter
$N(14)-H(14A)\cdots N(2)^{v}$	0.90(4)	2.13(4)	2.997(7)	163(4)	inter
$N(14)$ - $H(14B)$ ···· $N(3)^i$	0.89(5)	2.52(5)	3.294(7)	146(4)	inter
$N(15)$ - $H(15A)$ ···· $O(1)^i$	0.89(4)	2.23(5)	2.837(7)	125(4)	inter
$N(15)$ - $H(15A)$ ···· $N(3)^{i}$	0.89(4)	2.28(4)	3.134(7)	161(4)'	inter
N(15)-H(15B)····N(5)	0.89(4)	2.00(4)	2.858(7)	161(4)	intra

i: x,-1+y,-1+z; ii: 3/2-x,y,-1/2+z; iii: 3/2-x,-1+y,-1/2+z; iv: x,y,-1+z; v: 2-x,2-y,-1/2+z.

4. ¹H and ¹³C NMR spectra of the title compounds:

Figure S2 ¹³C NMR specta (75 MHz) of 1 in DMSO- d_6 at 25 °C

Figure S3 ¹H NMR spectra (300 MHz) of 2 in acetone-*d*₆ at 25 °C

Figure S4 ¹³C NMR specta (75 MHz) of 2 in acetone- d_6 at 25 °C

Figure S6 ¹³C NMR specta (75 MHz) of 3 in DMSO- d_6 at 25 °C

Figure S8 ¹³C NMR specta (75 MHz) of 4 in DMSO-d₆ at 25 °C

Figure S10 ¹³C NMR specta (75 MHz) of 5 in DMSO-d₆ at 25 °C

Figure S12 ¹³C NMR specta (75 MHz) of 6 in DMSO- d_6 at 25 °C

Figure S13 ¹H NMR spectra (300 MHz) of 7 in DMSO- d_6 at 25 °C

Figure S14 ¹³C NMR specta (75 MHz) of 7 in DMSO-d₆ at 25 °C

Figure S16 $^{\rm 13}\rm C$ NMR specta (75 MHz) of 8 in DMSO-d_6 at 25 $^{\circ}\rm C$

Figure S17 ¹H NMR spectra (300 MHz) of 9 in DMSO- d_6 at 25 °C

Figure S18 ¹³C NMR specta (75 MHz) of 9 in DMSO-d₆ at 25 °C

Figure S19 ¹H NMR spectra (300 MHz) of 10 in DMSO- d_6 at 25 °C

Figure S20 ¹³C NMR specta (75 MHz) of 10 in DMSO- d_6 at 25 °C

Figure S21 ¹H NMR spectra (300 MHz) of 11 in DMSO-d₆ at 25 °C

Figure S22 ¹³C NMR specta (75 MHz) of 11 in DMSO-d₆ at 25 °C

r154.68 -152.39 r151.19 r145.13 r146.95 r128.48 (40.36 (40.07 (39.80 (39.24 (38.97 ĸĸŧĸĹŶĸţŧġĔĸĹĸĸĹĸġĔĸĔĸţĊŗġĸĬġĸĬġĸġĊġĬŶġĸĸġŎġĔġŶġĸĬŊĸŎĸŶĬĔġŎţġĊĬŶĸĔĸŶĸĔġŶŎĸĔĬŎĬŶŎĬŶĸĬŔĹŶĬŎĬŶĸŢĸġŎĬŶĿĹ 220 210 200 190 180 170 160 150 140 130 120 110 100 90

Figure S24 13 C NMR specta (75 MHz) of 12 in DMSO- d_6 at 25 °C

Figure S25 ¹H NMR spectra (300 MHz) of 13 in DMSO- d_6 at 25 °C

Figure S26 ^{13}C NMR specta (75 MHz) of 13 in DMSO- d_6 at 25 $^{\circ}\text{C}$

-7.51

-2.50

Figure S28 ¹³C NMR specta (75 MHz) of 14 in DMSO-d₆ at 25 °C

Figure S30 ¹³C NMR specta (75 MHz) of 15 in DMSO-d₆ at 25 °C

Figure S31 ¹H NMR spectra (300 MHz) of 16 in DMSO-d₆ at 25 °C

Figure S32 13 C NMR specta (75 MHz) of 16 in DMSO- d_6 at 25 °C

Figure S34 ¹³C NMR specta (75 MHz) of 17 in DMSO- d_6 at 25 °C

Figure S38 ¹³C NMR specta (75 MHz) of 19 in DMSO- d_6 at 25 °C

Figure S39 ¹H NMR spectra (300 MHz) of 20 in DMSO- d_6 at 25 °C

Figure S40 ¹³C NMR specta (75 MHz) of 20 in DMSO- d_6 at 25 °C

Figure S41 ¹H NMR spectra (300 MHz) of 21 in DMSO-d₆ at 25 °C

Figure S42 13 C NMR specta (75 MHz) of 21 in DMSO- d_6 at 25 °C

Figure S43 ¹H NMR spectra (300 MHz) of 22 in DMSO-d₆ at 25 °C

Figure S44 $^{13}\mathrm{C}$ NMR specta (75 MHz) of 22 in DMSO- d_6 at 25 $^{\circ}\mathrm{C}$

Figure S46 $^{13}\mathrm{C}$ NMR specta (75 MHz) of 23 in DMSO- d_6 at 25 $^{\circ}\mathrm{C}$

5. DSC curves of the title compounds

Figure S51 DSC curve of compound 1

Figure S52 DSC curve of compound 2

Figure S53 DSC curve of compound 3

Figure S54 DSC curve of compound 4

Figure S55 DSC curve of compound 5

Figure S56 DSC curve of compound 6

Figure S57 DSC curve of compound 7

Figure S58 DSC curve of compound 8

Figure S59 DSC curve of compound 9

Figure S60 DSC curve of compound 10

Figure S61 DSC curve of compound 11

Figure S62 DSC curve of compound 12

Figure S63 DSC curve of compound 13

Figure S64 DSC curve of compound 14

Figure S65 DSC curve of compound 15

Figure S66 DSC curve of compound 16

Figure S67 DSC curve of compound 17

Figure S68 DSC curve of compound 18

Figure S69 DSC curve of compound 19

Figure S70 DSC curve of compound 20

Figure S71 DSC curve of compound 21

Figure S72 DSC curve of compound 22

Figure S73 DSC curve of compound 23

Figure S74 DSC curve of compound 24

Figure S75 DSC curve of compound 25