Supporting Information for

In-Situ g-C$_3$N$_4$ Self-Sacrificial Synthesis of g-C$_3$N$_4$/LaCO$_3$OH Heterostructure with Booming Interfacial Charge Transfer and Separation for Photocatalytic NO Removal

Zhenyu Wanga,b, Yu Huangb,c,*, Long Chenb,c, Meijuan Chena, Junji Caoa,b,c,*, Wingkei Hod, Shun Cheng Leee

a School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
c State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
d Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong, China
e Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

*Corresponding author:
Prof. Yu Huang, E-mail address: huangyu@ieecas.cn Tel: 86-29-6233 6261
Prof. Junji Cao, E-mail address: cao@loess.llaqg.ac.cn
Figure Captions

Figure S1. Visible-light photocatalytic activities of CN-LCOH-1.5, CN-LCOH, and CN-LCOH-2.5 for NO removal in air.

Scheme S1. Schematic flow diagram of the photocatalytic test system.

Figure S2. Survey XPS spectra (a) and high-resolution XPS spectra of La 3d (b), C 1s (c), and N 1s (d) of the as-prepared samples.

Figure S3. Energy band structure of CN and LCOH.

Figure S4. The CO$_3^{2-}$ detection experiment.

Figure S5. Visible-light photocatalytic activities of CN and CN after hydrothermal treatment for NO removal in air.

Figure S6. The monitoring of the fraction of ΔNO$_2$ (a) and NO$_2$ selectivity of LCOH, CN-LCOH, Mechanical mixture, and CN samples, respectively.

Figure S7. FT-IR spectra of CN-LCOH before and after five photocatalytic repeated reactions.

Figure S8. Schematic crystal structure of (a) g-C$_3$N$_4$ ($a = 7.153$ Å, $b = 7.153$ Å, $c = 7.153$ Å), and (b) LaCO$_3$OH ($a = 12.675$ Å, $b = 12.675$ Å, $c = 10.081$ Å); The crystal models of CN-LCOH (c) before and (d) after geometry optimization.

Figure S9. XRD patterns of (a) g-C$_3$N$_4$/Bi$_2$O$_2$CO$_3$ and g-C$_3$N$_4$ and (b) g-C$_3$N$_4$/SrCO$_3$ and g-C$_3$N$_4$.

Figure S10. Schematic crystal structure of (a) Bi$_2$O$_2$CO$_3$ ($a = 3.865$ Å, $b = 3.862$ Å, $c = 13.675$ Å), and (b) SrCO$_3$ ($a = 5.14$ Å, $b = 8.44$ Å, $c = 6.11$ Å).

Figure S11. Visible-light photocatalytic activities of g-C$_3$N$_4$/Bi$_2$O$_2$CO$_3$ and g-C$_3$N$_4$/SrCO$_3$ for NO removal in air.

Table Caption

Table S1. N element contents, weight ratio LCOH %, weight ratio CN %, molar and weight ratio of LaCO$_3$OH to the g-C$_3$N$_4$ in CN-LCOH-1.5, CN-LCOH, CN-LCOH-2.5, CN-LCOH-1, and CN-LCOH-2.
Figure S1. Visible-light photocatalytic activities of CN-LCOH-1.5, CN-LCOH, and CN-LCOH-2.5 for NO removal in air.

Scheme S1. Schematic flow diagram of the photocatalytic test system
Table S1. N element contents, weight ratio LCOH %, weight ratio CN %, molar and weight ratio of LaCO$_3$OH to the g-C$_3$N$_4$ in CN-LCOH-1.5, CN-LCOH, CN-LCOH-2.5, CN-LCOH-1, and CN-LCOH-2.

<table>
<thead>
<tr>
<th>Samples</th>
<th>N wt %</th>
<th>Weight ratio LCOH %</th>
<th>Weight ratio CN %</th>
<th>Molar ratio LCOH/CN %</th>
<th>Weight ratio LCOH/CN %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN-LCOH-1.5</td>
<td>50.20</td>
<td>22.11</td>
<td>77.89</td>
<td>12.09</td>
<td>28.39</td>
</tr>
<tr>
<td>CN-LCOH</td>
<td>48.82</td>
<td>24.23</td>
<td>75.77</td>
<td>13.62</td>
<td>31.99</td>
</tr>
<tr>
<td>CN-LCOH-2.5</td>
<td>43.72</td>
<td>32.16</td>
<td>67.84</td>
<td>20.19</td>
<td>47.41</td>
</tr>
<tr>
<td>CN-LCOH-1</td>
<td>48.65</td>
<td>24.52</td>
<td>75.48</td>
<td>13.83</td>
<td>32.49</td>
</tr>
<tr>
<td>CN-LCOH-2</td>
<td>48.53</td>
<td>24.70</td>
<td>75.30</td>
<td>13.97</td>
<td>32.27</td>
</tr>
</tbody>
</table>

![Graphs](image.png)
Figure S2. Survey XPS spectra (a) and high-resolution XPS spectra of La 3d (b), C 1s (c), and N 1s (d) of the as-prepared samples.

Figure S3. Energy band structure of CN and LCOH.

The generation of CO_3^{2-} from the decomposition of g-C$_3$N$_4$ was proved by an experiment as follows:

Repeated the part 2 in experimental section without adding La(NO$_3$)$_3$·6H$_2$O at 160 °C for 12h. After cooling down to room temperature naturally, the up-layer clear solutions were added dropwise into 20 mL 0.24 M BaCl$_2$ solution (label 1) and the transparent solution became turbid (Fig. S3a-c). For comparison, deionized water was used instead of the up-layer clear solution and remained other conditions unchanged (label 2). Subsequently, after adding 0.02 M HCl, the turbid solution (label 1) became transparent again and formed amounts of bubbles (Fig. S3d-f), which further illustrated the fact that the CO_3^{2-} do exist in the solution and was generated from the decomposition of g-C$_3$N$_4$.

s5
Figure S4. The CO$_3^{2-}$ detection experiment.

Figure S5. Visible-light photocatalytic activities of CN and CN after hydrothermal treatment for NO removal in air.
Figure S6. The monitoring of the fraction of ΔNO_2 (a) and NO$_2$ selectivity of LCOH, CN-LCOH, Mechanical mixture, and CN samples, respectively.

The NO$_2$ selectivity was calculated according to the following equation 1:

$$\text{NO}_2 \text{ selectivity (\%)} = \frac{C_{\text{NO}_2}}{(C_0 - C)} \times 100$$

where C_{NO_2} represents the production of NO$_2$, ppb, C_0 is the initial concentration of NO, ppb, and C is the final concentration of NO, ppb.

Figure S7. FT-IR spectra of CN-LCOH before and after five photocatalytic repeated reactions.
Figure S8. Schematic crystal structure of (a) g-C$_3$N$_4$ ($a = 7.153$ Å, $b = 7.153$ Å, $c = 7.153$ Å), and (b) LaCO$_3$OH ($a = 12.675$ Å, $b = 12.675$ Å, $c = 10.081$ Å); The crystal models of CN-LCOH (c) before and (d) after geometry optimization.

Figure S9. XRD patterns of (a) g-C$_3$N$_4$/Bi$_2$O$_2$CO$_3$ and g-C$_3$N$_4$ and (b) g-C$_3$N$_4$/SrCO$_3$ and g-C$_3$N$_4$.
Figure S10. Schematic crystal structure of (a) Bi$_2$O$_2$CO$_3$ ($a = 3.865$ Å, $b = 3.862$ Å, $c = 13.675$ Å), and (b) SrCO$_3$ ($a = 5.14$ Å, $b = 8.44$ Å, $c = 6.11$ Å).

Figure S11. Visible-light photocatalytic activities of g-C$_3$N$_4$/Bi$_2$O$_2$CO$_3$ and g-C$_3$N$_4$/SrCO$_3$ for NO removal in air.