Supporting Information for *Journal of Materials Chemistry A*

Graphene Coupled Ti$_3$C$_2$ MXenes-Derived TiO$_2$ Mesostructure: Promising Sodium-ion Capacitor Anode with Fast Ion Storage and Long-Term Cycling

Rutao Wang,a Shijie Wang,a Yabin Zhang,a Dongdong Jin,a Xinyong Tao,b Li Zhang*

aDepartment of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR 999077, P. R. China.

bCollege of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

*Email: lizhang@mae.cuhk.edu.hk
Fig. S1 Optical images showing the violently oxidized process of MXenes-Ti$_3$C$_2$ with 30 wt% H$_2$O$_2$.

Fig. S2 Optical images showing the reaction process of MXenes-Ti$_3$C$_2$ with H$_2$O$_2$ with the different concentrations.
Fig. S3 Optical images showing Ti-peroxo complex gels obtained by the oxidation of H$_2$O$_2$ with different concentrations: (a1) and (a2)-1 wt% H$_2$O$_2$, (b1) and (b2)-3 wt% H$_2$O$_2$, (c1) and (c2)-6 wt% H$_2$O$_2$, (d1) and (d2)-15 wt% H$_2$O$_2$, (e1) and (e2)-30 wt% H$_2$O$_2$. All the gels in the glass bottles can be inverted. Some unreacted raw materials are observed at the bottom of the gels, as the dilute H$_2$O$_2$ was used.

Fig. S4 (a) Optical image and (b) XRD pattern of freeze-dried Ti-peroxo complex gel (from 30 wt% H$_2$O$_2$).
Fig. S5 (a) UV-vis spectrum, (b) XRD pattern, (c) and (d) TEM images of Ti-peroxo complex after aged for two months.

Fig. S6 Optical images for (left) Ti-peroxo complex-GO and (right) M-TiO$_2$-RGO samples.
Fig. S7 (a) SEM and (b) HRTEM image of M-TiO$_2$-RGO. Blue arrows show mesoporous structure in M-TiO$_2$-RGO.
Fig. S8 EDS spectrum of M-TiO$_2$.

Fig. S9 TGA curves of M-TiO$_2$ and M-TiO$_2$-RGO samples in air with an elevated temperature rate of 10° min$^{-1}$. The weight loss of M-TiO$_2$ might be related to the decomposition and oxidation of the residual carbon in air atmosphere. Assuming M-TiO$_2$ with and without RGO experiences the same weight loss, the content of M-TiO$_2$ in M-TiO$_2$-RGO can be calculated as 73.7/98.4=74.9 wt%. The weight retention value here is obtained at 700 °C. As we know, RGO can be completely decomposed at 700 °C in air. Then the percentage of RGO in M-TiO$_2$-RGO is (100-74.9) wt%=25.1 wt%.
Fig. S10 (a) Full and (b) C1s XPS spectrum of MXenes-Ti$_3$C$_2$, M-TiO$_2$, and M-TiO$_2$-RGO samples.

Fig. S11 Rate capability of Ti$_3$C$_2$ MXenes and M-TiO$_2$ at various current densities ranging from 50 to 2000 mA g$^{-1}$.
Fig. S12 CV curves from 10 to 100 mV s\(^{-1}\) of M-TiO\(_2\)-RGO electrode.

Fig. S13 Contribution ratio of the capacitive and diffusion-controlled charge versus scan rate of M-TiO\(_2\)-RGO electrode.
Fig. S14 (a) Galvanostatic charge-discharge curves (current density of 0.5 A g$^{-1}$) of M-TiO$_2$-RGO//PDPC SIC measured at different anode/cathode mass ratios. (b) Ragone plot (power density vs. energy density) of this M-TiO$_2$-RGO//PDPC SIC with different anode/cathode mass ratios.