Supporting Information

Ag–Doped PEDOT:PSS/CNT Composites for Thin–Film All–Solid–State Supercapacitors with a stretchability of 480%

Yaping Zhu, b Ning Li, a Tian Lv, a Yao Yao, a Huanan Peng, b Jun Shi, b Shaokui Cao, b and Tao Chen* a

aShanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, and Institute of Advanced Study, Tongji University, Shanghai, 200092, PR China. E–mail: tchen@tongji.edu.cn

bSchool of Materials Science and Engineering, Zhengzhou University, Kexue Road 100, Zhengzhou, 450052, PR China. E–mail: shijun@zzu.edu.cn, caoshaokui@zzu.edu.cn
Figure S1. (a-c) SEM images with different magnifications of as-grown aligned CNT array from side view. (d) SEM image of as-grown aligned CNT array from top view.

Figure S2. TEM images of CNTs with low (a) and high (b) magnifications.
Figure S3. SEM images of CNTs composite films containing a certain content of PEDOT:PSS with different concentration of Ag (a, 0.5 wt%; b, 1.0 wt%; c, 2.0 wt%).
Figure S4. Cross-sectional SEM image of a Ag-doped PEDOT:PSS/CNT composite film. The surface of the CNT composite cracked seriously when it was cut in liquid nitrogen.

Figure S5. I–V curves of bare CNTs film and Ag-doped PEDOT:PSS/CNT composite film. The effective length of samples for measurement was 2 cm.
Figure S6. (a) CV curves of supercapacitors by using bare CNT electrode and PEDOT:PSS/CNT composite electrodes with different Ag-doped contents in PEDOT:PSS (12.4wt%) at the scan rate of 0.3 V s\(^{-1}\). (b) GCD curves of the above supercapacitors at charge-discharge current of 0.5 mA. (c) Nyquist plots of the supercapacitors at the frequency varying from 10\(^{-2}\) to 10\(^{5}\) Hz.

Table S1. Electrochemical performance of supercapacitors based on different electrodes obtained from Figure S6.

<table>
<thead>
<tr>
<th></th>
<th>CNTs</th>
<th>0 wt%</th>
<th>0.5 wt%</th>
<th>1.0 wt%</th>
<th>2.0 wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs (mF/cm(^2))</td>
<td>4.66</td>
<td>6.16</td>
<td>10.66</td>
<td>57.6</td>
<td>11.16</td>
</tr>
<tr>
<td>Rs (Ω)</td>
<td>6.8</td>
<td>6.43</td>
<td>6.41</td>
<td>5</td>
<td>3.92</td>
</tr>
</tbody>
</table>
Figure S7. (a) CV curves of a supercapacitor based on CNTs composite with 12.4 wt% of Ag-doped PEDOT:PSS at different scanning rates. (b) GCD curves of the supercapacitor at different charge/discharge currents.

Figure S8 Cyclic performance of supercapacitors based bare CNTs films and Ag-doped PEDOT:PSS/CNT composite with 12.4 wt% of PEDOT at a charge-discharge current of 0.3 mA cm$^{-2}$.
Figure S9. (a) CV curves (0.1 V s$^{-1}$) and (b) Charge–discharge (at a current of 0.5 mA cm$^{-2}$) curves of a supercapacitor under different bending and twisted states.

Figure S10. Dependence of specific capacitance with increasing tensile strains. C_0 and C are the specific capacitances before and after stretching, respectively.
Figure S11. SEM images of aligned compact CNT film before (a) and after (b) stretched.

Figure S12. Dependence of the electrical resistance on different strains for the bare CNT film and Ag-PEDOT:PSS/CNT composite electrode.
Figure S13. Changes of specific capacitance of an all-solid-state supercapacitor based on Ag-PEDOT:PSS/CNT composite electrodes during to stretched to 400%, 300%, 200 and 100% strains for different cycles.