Supporting Information for

Ordered Mesoporous WO_{2.83}: Selective Reduction Synthesis, Exceptional Localized Surface Plasmon Resonance and Enhanced Hydrogen Evolution Reaction Activity[†]

Hefeng Cheng,*^a Miriam Klapproth,^{ab} Anton Sagaltchik^b, Shuang Li^a and Arne Thomas*^a

^aDepartment of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623
^bBasCat, UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

Extended Experimental Section

Scheme S1. Schematic diagram of the apparatus used for the H₂ reduction of the samples.

Synthesis of Meso-WO₃ (AMT). Meso-WO₃ (AMT) was also prepared by the nanocasting method similar to that of Meso-WO₃ (PTA) but with ammonium metatungstate hydrate (AMT) as precursor. Typically, 1 g of AMT was dissolved in 3 mL distilled water, and then the solution was added to the KIT-6 support by incipient wetness impregnation. The mixture was dried at 100 °C for 12 h. This impregnation process was repeated two times by adding another 3 mL of aqueous solution containing 1 g of AMT to receive a final mass ratio of 1:3 between KIT-6 support and AMT precursor. The composite was calcined at 650 °C for 4 h with a heating rate of 2 °C/min. To remove silica template, the silica/tungsten oxide composites were stirred in 100 mL of NH_4HF_2 (4 M) solution for 24 h, washed with water and ethanol for three times, respectively, and dried at 100 °C.

Synthesis of mesoporous $WO_{2.83}$ (AMT). Meso- $WO_{2.83}$ (AMT) was also obtained by H_2 reduction of Meso- WO_3 (AMT) at 550 °C for 1 h in the one-end tube furnace by the method mentioned above. The experimental parameters were kept the same.

Fig. S1 Structural characterizations of mesoporous silica (*KIT-6*). (a) Typical TEM image, (b) small-angle XRD, (c) N_2 sorption isotherm and (d) the corresponding pore size distribution curve of the *KIT-6* hard template. *KIT-6* possesses order mesoporous structure, and the peaks assigned to (211), (200) and (420) confirm its cubic *Ia3d* symmetry.¹ With a uniform pore size of around 6.7 nm, the *KIT-6* template has a BET surface area as high as 812 m²/g.

Fig. S2 Structural characterizations of Meso-WO₃. (a) XRD pattern, (b) typical SEM image, (c,d) TEM images, (e) N₂ sorption isotherms and (f) the corresponding pore size distribution curves of the Meso-WO₃. The drop lines in (a) show the standard patterns of monoclinic WO₃ (red, PDF#43-1035). After impregnation with PTA precursors, calcination at 650 °C and removal of the KIT-6 template by NH₄HF₂, the as-prepared product is well assigned to monoclinic WO₃. SEM and TEM images further confirmed the ordered mesoporous structure of WO₃ product. The as-prepared Meso-WO₃ has a specific surface area of 67 m²/g and bimodel size distributions.

Fig. S3 (a) TEM image of the commercial bulk WO₃ material. (b) XRD pattern of the commercial bulk WO₃. The drop line shows the standard XRD pattern of monoclinic WO₃ (PDF#43-1035). With particle size ranging from one hundred to several hundreds of nanometers, Bulk-WO₃ has a specific area of 4.6 m²/g.

Fig. S4 XRD patterns of the products through H_2 reduction of mesoporous WO₃ at 450, 500, 550 and 600 °C, respectively. The drop lines indicate the standard XRD patterns of monoclinic WO_{2.83} and the asterisks (*) present the XRD peaks from monoclinic WO₃. It is seen that the products by H_2 reduction of Meso-WO₃ at 500, 550 and 600 °C are well assigned to WO_{2.83}, while partial WO₃ still remains in the product by H_2 reduction of Meso-WO₃ at 450 °C.

Fig. S5 (a) XRD pattern of the commercial bulk WO₃ after H₂ reduction at 600 °C for 1 h. The drop line shows the standard XRD pattern of monoclinic WO₃ (PDF#43-1035) and WO_{2.9} (PDF#05-0386), and the XRD peaks marked with asterisks (*) are attributed to WO_{2.9}. (b) XRD pattern of the commercial bulk WO₃ after H₂ reduction at 685 °C for 1 h. The drop line shows the standard XRD pattern of monoclinic WO_{2.72} (PDF#05-0392) and WO₂ (PDF#32-1393), and the XRD peaks marked with asterisks (*) are attributed to WO₂. The XRD patterns suggest that after H₂ reduction at 600 and 685 °C for 1h, WO_{2.9} and WO_{2.72} as the intermediate sub-stoichiometric WO_{3-x} occur in the of Bulk-WO₃.

Fig. S6 (a) XRD pattern, (b) TEM image, (c) N₂ sorption isotherm and (d) the corresponding pore size distribution curve of the Meso-WO₃ (AMT) product prepared by using ammonium metatungstate (AMT) as precursors. The drop lines in (a) indicate the standard XRD patterns of monoclinic WO₃ (black, PDF#43-1035).

As the derived Meso-WO₃ from phosphotungstic acid precursor contains 2.9 wt% of phosphorus (P) based on inductively coupled plasma optical emission spectrometry (ICP-OES), to exclude the possible influence of P element and verify the role of mesoporous structure in the phase engineering process, ammonium metatungstate (AMT) as a P-free precursor was also conducted to prepare Meso-WO₃ (Figure S6). With AMT as W precursor, mesoporous structure was also able to be prepared, which is well indexed to be monoclinic WO₃. The Meso-WO₃ (AMT) has a BET surface area of 58 m²/g and a dominant pore size of around 12 nm.

Fig. S7 H₂ TPR plots of commercially available Bulk-WO₃ and as-prepared Meso-WO₃.

Fig. S8 XRD pattern of the Meso-WO₃ (AMT) product after H₂ reduction at 550 °C. The drop lines in indicate the standard XRD patterns of monoclinic WO_{2.83} (black), and the asterisks (*) present the XRD peaks from monoclinic WO₂. (b) UV/vis diffuse reflectance spectra of the Meso-WO₃ (AMT) products before and after H₂ reduction at 550 °C.Upon H₂ reduction at 550 °C, the as-prepared product mainly consists of monoclinic WO_{2.83}, and slight WO₂ was

formed due to over-reduction, which shows strong plasmonic resonance in the visible light region with absorption peak centering at 650 nm.

Fig. S9 Large area SEM image of the as-prepared well-ordered mesoporous $WO_{2.83}$. The well-resolved stripes in the large-area SEM image show the uniformity of the well-ordered mesoporous $WO_{2.83}$.

Fig. S10 (a) N_2 sorption isotherms and (b) the corresponding pore size distribution curves of the as-prepared Meso-WO_{2.83} product.

Fig. S11 Small-angle XRD patterns of the Meso-WO₃ and Meso-WO_{2.83} products.

Fig. S12 Photographs of the (a) Meso-WO₃ and (b) Meso-WO_{2.83} samples.

Fig. S13 UV/vis diffuse reflectance spectrum of the Meso-WO_{2.83} sample. The surface plasmon resonance peak is located at about 650 nm, with an approximate line width of 410 nm.

Free carrier density calculations of plasmonic Meso-WO_{2.83}

The plasmonic resonance of Meso-WO_{2.83} is related to the abundant delocalized electrons induced by oxygen vacancies, which could be described by the Drude model.² At the resonance condition, the plasmonic frequency ω_{sp} can be expressed as

$$\omega_{\rm sp} = \sqrt{\frac{\omega_p^2}{1 + 2\varepsilon_m} - \gamma^2} \tag{1}$$

where ω_p is the bulk plasma, ε_m is dielectric constant of the surrounding medium and γ is the damping parameter that numerically equals to the linewidth of the plasmon resonance band.³ In our case, the value of ε_m is 1. For Meso-WO_{2.83}, the resonance energy equals to 1.91 eV at the plasmonic wavelength (650 nm), and the linewidth of 0.33 eV by measuring the full width at half-maximum (FWHM) of the optical spectrum (approximately 410 nm, Figure S13). Therefore, the bulk plasma frequency ω_p depends on the free electrons density *N* by the formula

$$\omega_p^2 = \frac{Ne^2}{\varepsilon_0 m^*} \tag{3}$$

where *e* is the elementary charge, ε_0 is the permittivity of free space, and m^* is the effective mass of the free carriers. According to the previous report,⁴ the effective electron mass of WO_{2.83} is set to be $m^* = 1.2m_0$, and m_0 is the electron rest mass. Therefore, the free electron concentration *N* is estimated to be 9.79×10^{21} cm⁻³ in the Meso-WO_{2.83} product.

Fig. S14 High-resolution W 4*f* XPS spectra of Meso-WO₃ and Meso-WO_{2.83}. The dashed line highlights the presence of W^{5+} oxidation state locating at around 33 eV in Meso-WO_{2.83}, whereas this band disappears in pristine Meso-WO₃.

Fig. S15 $\rm O$ 1s XPS spectra of the Meso-WO_3 and Meso-WO_{2.83} products.

Fig. S16 (a) UV/vis diffuse reflectance spectra of the mesoporous WO₃ products before and after H₂ reduction at 600 and 650 °C, respectively. (b) XRD pattern of the product by H₂ reduction of mesoporous WO₃ at 650 °C. The drop lines indicate the standard XRD patterns from monoclinic WO_{2.83} (blue, PDF#36-0103), monoclinic WO₂ (olive, PDF#32-1393), and cubic W₃O (black, PDF#41-1230).

Fig. S17 XRD patterns of the mesoporous $WO_{2.83}$ products upon air exposure for different time. The drop lines indicate the monoclinic $WO_{2.83}$ (PDF#36-0103).

Fig. S18 Polarization curves for electrocatalytic HER performances of Meso- $WO_{2.83}$ products upon air exposure for different time together with Meso- WO_3 .

Fig. S19 (a) Polarization curves for electrocatalytic HER performances of Meso-WO_{2.83} products prepared at various H_2 reduction temperatures. (b) The overpotential comparison of Meso-WO_{2.83} products prepared at various H_2 reduction temperatures at the current density of 10 mA cm⁻².

Fig. S20 Polarization curves of Meso-WO $_{2.83}$ initially and after 1000 and 5000 CV scans.

Plasmonic Materials	Morphology	LSPR wavelength (nm)	Reference	
WO _{2.83}	Mesoporous structure	650	This work	
WO _{3-x}	Nanorods	~900	J. Am. Chem. Soc. 2012, 134, 3995	
WO _{3-x}	Nanosheets	1450	Adv. Mater. 2015, 27, 1580	
MoO _{3-x}	Nanosheets	680	Angew. Chem. Int. Ed. 2014, 53, 2910	
TiO _{2-x}	Nanocrystals	~3400	J. Am. Chem. Soc. 2012, 134, 6751	
Cu _{2-x} S	Quantum dots	1800	Nat. Mater. 2011, 10, 361	
Cu _{2-x} Se	Nanocrystals	1100-1700	J. Am. Chem. Soc. 2011, 133, 11175	
Cu ₃ P	Nanoplatelets	~1800	Angew. Chem. Int. Ed. 2013, 52, 6762.	
Cu _x In _y S ₂	Quantum dots	~1500	Nano Lett. 2014, 14, 3262	
GeTe	Nanoparticles	~2500	Phys. Rev. Lett. 2013, 111, 037401	
P-doped Si	Nanocrystals	>2500	Nano Lett. 2013, 13, 1317	
In-doped SnO ₂ (ITO)	Nanoparticles	1618->2200	J. Am. Chem. Soc. 2009, 131, 17736	
Al-doped ZnO (AZO)	Nanocrystals	>2500	Nano Lett. 2011, 11, 4706	

Table S1. Summary of some reported plasmonic doped-semiconductors.

Catalyst	J (mA cm ⁻ ²)	η ₁₀ (mV)	Ref.
Meso-WO _{2.83}	10	288	This work
W ₁₈ O ₄₉ nanofibers	10	425	Chem. Commun. 2017, 53, 4323.
WO _{2.9}	10	70	Nat. Commun. 2015, 6, 8064.
W ₁₈ O ₄₉ /WS ₂	10	310	Chem. Commun. 2015, 51, 8334
1%Pd-doped	10	331	Chem. Commun. 2017, 53, 4323
W ₁₈ O ₄₉			
WO _{3-x} /C (10%)	10	300	ACS Appl. Mater. Interfaces 2016, 8, 18132.
Ta-doped WO ₃	10.72	520	<i>Electrochim. Acta</i> 2014 , <i>134</i> , 201.

Table S2.	Summary	of some rep	orted WO _{3-x}	-based electro	ocatalyst for HER.

References

- [1] F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 2003, 2136.
- [2] A. Comin, L. Manna, Chem. Soc. Rev. 2014, 43, 3957.
- [3] F. Wang, F. Q. Li, L. Lin, H. Peng, Z. Liu, D. Xu, J. Am. Chem. Soc. 2015, 137, 12006.
- [4] K. Manthiram, A. P. Alivisatos, J. Am. Chem. Soc. 2012, 134, 3995.