Supporting Information for

Post-Healing of Defects: Alternative Way for Passivation of Carbon-Based Mesoscopic Perovskite Solar Cells via Hydrophobic Ligand Coordination

Guangguang Huang, a Chunlei Wang, a Hao Zhang, b Shuhong Xu, a Qingyu Xu*, b Yiping Cui*, a

a. Advanced Photonics Center, Southeast University, Nanjing, 210096, P. R. China
b. School of Physics, Southeast University, Nanjing, 211189, P. R. China
*E-mail: wangchl@seu.edu.cn, xuqingyu@seu.edu.cn, and cyp@seu.edu.cn

Fig. S1 Adsorption position of ligands in different device structures.

Fig. S2 Digital images of the triple-layer scaffold at different stages.
Fig. S3 The PCE changes of fully printable carbon-based MPSCs with varying TOPO precursor concentration. The average PCE is collected from 10 different test points. The mM represents 10^{-3} mmol/mL.

Fig. S4 XPS of pristine and TOPO post-treated MAPbI$_3$ film.
Fig. S5 XPS results of C 1s (a), N 1s (b), I 3d (c), Pb 4f (d), O 1s (e) and P 2p (f) for pristine and TOPO post-treated MAPbI$_3$ film.

Fig. S6 Nyquist plots of devices with/without TOPO post-treatment and the equivalent circuit employed to fit the EIS spectra. The fitting results are showed in Table S1.
Fig. S7 V_{oc} of devices with/without TOPO post-treatment plotted against light intensity on a logarithmic scale.

![Graph showing normalized V_{oc} vs. light intensity](image)

Fig. S8 X-Ray Diffraction (XRD) of pristine and post-treated TOPO perovskite film.

![XRD spectra](image)
Fig. S9 Time-resolved photoluminescence (TRPL) of pristine and TOPO post-treated MAPbI$_3$ film deposited on TiO$_2$.

Fig. S10 Atomic force microscope (AFM) images of pristine and TOPO post-treated perovskite film.
Fig. S11 The solubility of chlorobenzene to perovskite film at different TOPO amount. The TOPO concentration used for the MPSCs is 0.001mmol/ml. The area of perovskite film in bottle is equal to the MPSCs (0.64 cm²).

![Image of solubility](image.png)

Table. S1 The fitting results of EIS in Fig S6.

<table>
<thead>
<tr>
<th></th>
<th>Rs (Ω)</th>
<th>Rtr (Ω)</th>
<th>CPEtr-T</th>
<th>CPEtr-P</th>
<th>Rrec(Ω)</th>
<th>CPErec-T</th>
<th>CPErec-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine</td>
<td>41.97</td>
<td>187.2</td>
<td>1.178E-4</td>
<td>0.687</td>
<td>363.6</td>
<td>5.809E-5</td>
<td>0.973</td>
</tr>
<tr>
<td>+TOPO</td>
<td>42.23</td>
<td>175.4</td>
<td>5.548E-5</td>
<td>0.788</td>
<td>826.8</td>
<td>5.070E-5</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Table. S2 The fitting results of TRPL in Fig S9.

<table>
<thead>
<tr>
<th></th>
<th>t1(ns)</th>
<th>a1</th>
<th>t2(ns)</th>
<th>a2</th>
<th>tavg(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine</td>
<td>19.8</td>
<td>5812</td>
<td>627</td>
<td>383</td>
<td>57.3</td>
</tr>
<tr>
<td>+TOPO</td>
<td>40.4</td>
<td>2143</td>
<td>818</td>
<td>381</td>
<td>158.8</td>
</tr>
</tbody>
</table>