Electronic Supplementary Information for:

Systematic Structure Control of Ammonium Iodide Salts as Feasible UCST-type Forward Osmosis Draw Solutes for the Treatment of Wastewater

Authors: Jeongseon Park, Heeyoung Joo, Minwoo Noh, Yon Namkoong, Seonju Lee, Kyung Hwa Jung, Hye Ryun Ahn, Seulah Kim, Jong-Chan Lee, Jae Hoon Yoon and Yan Lee*

Table of contents:

Figure S1. Synthetic scheme and 1H NMR spectra of a) 3MBAI, b) 3MOAI, c) 3PEAI, d) HM2I, e) HM4I. f) Synthetic scheme and 1H NMR spectra of N,N,N',N'-tetramethyl-1,6-diaminohexane and HM6I, and g) 13C NMR spectra of N,N,N',N'-tetramethyl-1,6-diaminohexane and HM6I. h) Synthetic scheme and 1H NMR spectra of 1,8-diaminoctane and HM8I, and i) 13C NMR spectra of 1,8-diaminoctane and HM8I. j) Synthetic scheme and 1H NMR spectra of HE2I.

Table S1. Amounts of reagents used for the synthesis of the ammonium iodide salts.

Figure S2. Schematic illustration of a) handmade U-shaped glass tubes for small-scale analysis (dead-end type) and b) a cross-flow instrument for large-scale analysis.

Figure S3. a) 1H NMR spectra of HM10I before and after stability test. b) LC/MS spectra of HM10I before and after stability test. c) The UCST phase transition of aqueous solution of 40 wt% HM10I (initial (●, solid line) and after stability test (△, dash line)). d) Viability of HeLa cells treated with HM8I (●, solid line) and HM10I (△, dotted line). Each data point represents the average value of five experiments (±S.D.).
c)

\[\text{Me}_3\text{NH} + \text{CH}_3\text{CH}_2I \rightarrow \text{ACN} \rightarrow 3\text{PEAI} \]

\([\text{N}] \)

\(\text{ solvent} \)

\(\delta \) ppm

\(6.0 \quad 5.5 \quad 5.0 \quad 4.5 \quad 4.0 \quad 3.5 \quad 3.0 \quad 2.5 \quad 2.0 \quad 1.5 \quad 1.0 \quad 0.5 \)

d)

\[\text{Me}_2\text{NNH} + \text{CH}_3I \rightarrow \text{EtOH} \rightarrow \text{HM2I} \]

\([\text{N}] \)

\(\text{ solvent} \)

\(\delta \) ppm

\(6.5 \quad 6.0 \quad 5.5 \quad 5.0 \quad 4.5 \quad 4.0 \quad 3.5 \quad 3.0 \quad 2.5 \quad 2.0 \quad 1.5 \quad 1.0 \quad 0.5 \)

e)

\[\text{Me}_2\text{NNH} + \text{CH}_3I \rightarrow \text{ACN} \rightarrow \text{HM4I} \]

\([\text{N}] \)

\(\text{ solvent} \)

\(\delta \) ppm

\(6.0 \quad 5.5 \quad 5.0 \quad 4.5 \quad 4.0 \quad 3.5 \quad 3.0 \quad 2.5 \quad 2.0 \quad 1.5 \quad 1.0 \quad 0.5 \)
N,N,N',N'-Tetramethyl-1,6-diaminohexane

N,N,N',N'-Tetramethyl-1,6-diaminohexane

solvent

A

B

C

D

100 90 80 70 60 50 40 30 20 10 0 5

b' c' d'

b c d

a' a b c' d'

A' B' C' D'

A B C D

6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Figure S1. Synthetic scheme and 1H NMR spectra of a) 3MBAI (1H NMR (300 MHz, D$_2$O, δ): 3.90 (hept, J = 6.6 Hz, 1H), 3.34 (q, J = 7.4 Hz, 1H), 2.81 (s, 1H), 1.45 – 1.36 (m, 6H), 1.36 – 1.27 (m, 2H)), b) 3MOAI (1H NMR (300 MHz, D$_2$O, δ): 3.37 – 3.26 (m, 1H), 3.11 (s, 4H), 1.86 – 1.70 (m, 1H), 1.36 (d, J = 3.5 Hz, 2H), 1.29 (s, 3H), 0.87 (dd, J = 8.8, 4.8 Hz, 1H)), c) 3PEAI (1H NMR (300 MHz, D$_2$O, δ): 3.30 (q, J = 7.3 Hz, 1H), 3.21 – 3.09 (m, 3H), 1.79 – 1.60 (m, 3H), 1.33 – 1.20 (m, 1H), 0.95 (t, J = 7.3 Hz, 4H)), d) HM2I (1H NMR (300 MHz, D$_2$O, δ): 4.04 (s, 1H), 3.31 (s, 4H)), e) HM4I (1H NMR (300 MHz, D$_2$O, δ): 3.40 (d, J = 5.9 Hz, 1H), 3.14 (s, 4H), 1.95 – 1.79 (m, 1H)), f) N,N,N',N'-tetramethyl-1,6-diaminohexane (1H NMR (300 MHz, D$_2$O,δ): 2.26 (dd, J = 17.1, 9.1 Hz, 4H), 2.15 (s, 12H), 1.56 – 1.36 (m, 4H), 1.29 (d, J = 6.7 Hz, 4H)) and HM6I (1H NMR (300 MHz, D$_2$O, δ): 3.41 – 3.28 (m, 1H), 3.12 (s, 4H), 1.83 (d, J = 2.7 Hz, 1H), 1.54 – 1.36 (m, 1H)), g) N,N,N',N'-tetramethyl-1,6-diaminohexane (13C NMR (75 MHz, D$_2$O, δ): 58.68 (s), 43.93 (s), 26.74 (s), 26.33 (s)) and HM6I (13C NMR (75 MHz, D$_2$O, δ): 66.52 (s), 66.78 (s), 53.25 – 52.77 (m), 27.92 (s), 25.31 (s), 22.32 (s), 16.59 (s)), h) 1,8-diaminooctane (1H NMR (300 MHz, D$_2$O, δ): 2.65 (t, J = 7.0 Hz, 4H), 1.57 – 1.43 (m, 8H)) and HM8I (1H NMR (300 MHz, D$_2$O, δ): 3.36 – 3.22 (m, 1H), 3.08 (s, 4H), 1.75 (d, J = 7.2 Hz, 1H), 1.36 (s, 2H)), i) 1,8-diaminooctane (13C NMR (75 MHz, D$_2$O, δ): 40.91 (s), 32.39 (s), 29.13 (s), 26.57 (s)) and HM8I (13C NMR (75 MHz, D$_2$O, δ): 66.78 (s), 53.25 – 52.77 (m), 27.92 (s), 25.31 (s), 22.32 (s), 16.59 (s)), and j) HE2I (1H NMR (300 MHz, D$_2$O, δ): 3.70 (s, 1H), 3.45 (q, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 4H)).
<table>
<thead>
<tr>
<th>Draw solute</th>
<th>Amine</th>
<th>Iodoalkane</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoammonium iodide salt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3MBAI</td>
<td>5</td>
<td>28</td>
<td>53</td>
</tr>
<tr>
<td>3MOAI</td>
<td>5.0(^a)</td>
<td>22</td>
<td>11.6(^a)</td>
</tr>
<tr>
<td>3PEAI</td>
<td>5</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Diammonium iodide salt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM2I</td>
<td>15</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>HM4I</td>
<td>18</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>HM6I</td>
<td>21</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>HM8I</td>
<td>14.4(^a)</td>
<td>75</td>
<td>105</td>
</tr>
<tr>
<td>HE2I</td>
<td>5</td>
<td>72</td>
<td>78</td>
</tr>
</tbody>
</table>

All units: mL (volume) except for \(^{a}\) g (weight).

Table S1. Amounts of reagents used for the synthesis of the ammonium iodide salts.

![Figure S2](image)

Figure S2. Schematic illustration of a) handmade U-shape glass tubes for small-scale analysis (dead-end type) and b) a cross-flow instrument for large-scale analysis.
Figure S3. a) 1H NMR spectra of HM10I before and after stability test. b) LC/MS spectra of HM10I before and after stability test. c) The UCST phase transition of aqueous solution of 40 wt% HM10I (initial (●, solid line) and after stability test (Δ, dash line)). d) Viability of HeLa cells treated with HM8I (●, solid line) and HM10I (Δ, dotted line). Each data point represents the average value of five experiments (±S.D.).