Supporting Information

Sustainable one-step strategy towards low
temperature curable superparamagnetic composite
based on smartly designed Iron nanoparticles and
Cardanol Benzoxazine

Monisha Monisha,1 Nisha Yadav,1 Shashi B. Srivastava,2 Samarendra P. Singh,2 Bimlesh Lochab1*

1Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences,
Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

2Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha
Nagar, Uttar Pradesh 201314, India.

*bimlesh.lochab@snu.edu.in

TABLE OF CONTENTS

1. Figure S1: Synthesis of C-trisapm ----- S3
2. Figure S2: 1H-NMR spectra of trisapm (a) and C-trisapm (inset shows the 13C-spectrum
of C-trisapm) in CDCl3; (b) FTIR spectrum of C-trisapm ----- S4
3. Figure S3: Digital images of suspension of iron nanoparticles (a, c) and their blends in cardanol
benzoxazine (b, d) in THF and chloroform (2.5 mg/mL loading of NPs at room temperature) -
---- S5
4. Figure S4: TGA (a) and DTG (b) traces of TA and ATA at a heating rate of 10 °C/ min. under
nitrogen atmosphere. ----- S6
5. Figure S5: Histograms for grain size distribution in polymer-nanoparticles composites
evaluated from the AFM images of 2µm × 2µm scan area ----- S6
6. Figure S6: Normalized transmission IR absorption spectra of C-trisapm blends after
curing at 150 °C for 5h ----- S7
7. Figure S7: Relative change in intensity of normalized FTIR spectra in the monomer
and its blend with iron NPs (150 °C for 2 h) at (a) 1255 cm⁻¹, (b) 1040 cm⁻¹, and (c)
1109 cm⁻¹ due to C-O-C asym, C-O-C sym and C-N-C stretching frequencies

S1
respectively ----- S8

8. Figure S8: Relative change in intensity of normalized FTIR spectra in the monomer and its blend with iron NPs (150 °C for 2 h) at (a) 1615 cm⁻¹, and (b) 1360 cm⁻¹. There is no peak at 1360 cm⁻¹ in case of C-trisapm, we have taken the absorbance value at 1360 cm⁻¹ in peak at 1370 cm⁻¹ for comparison purposes ----- S9

9. Figure S9: FTIR spectra of C-trisapm showing development of 1360 cm⁻¹ stretch after curing at 150 °C for 8 h ----- S10

10. Figure S10: Stacked time dependent normalized ¹H-NMR spectra of a) C-trisapm, b) C-trisapm(Fe)_0, c) C-trisapm(Fe)_TA, d) C-trisapm(Fe)ATA obtained from the reaction mixture at different time intervals at 150 °C. ¹H-NMR of C-trisapm at a higher temperature 210 °C for 3 h is shown to notice the changes in relative manner. Inset in figures showed a zoom in region from 3.5-4.4 ppm ----- S11, S12

11. Figure S11: Iron ion concentration in NPs: (a) complexation of Fe²⁺ ion with o-phenanthroline, (b) concentration of iron ions available with time, and (c) standard curve of FeCl₃ with o-phenanthroline ----- S13

12. Figure S12: Normalized UV-vis. spectra of blends C-trisapm obtained after heating at 150 °C for 5 h, recorded in DMSO as solvent ----- S14

13. Figure S13: Stacked normalized ¹H-NMR spectra of C-trisapm monomer and its polymerization reaction mediated by the presence of (Fe)_0 NPs using hydrogen peroxide vs. air ----- S15

14. Table S1: Molecular weight of soluble fraction in blends present after curing at 150 °C for 2 h ----- S16

15. Table S2: Magnetic properties of thermally cured C-trisapm blends ----- S16
Figure S1: Synthesis of C-trisapm

R = C_{15}H_{31}, C_{15}H_{29} (30\%), C_{15}H_{27} (15\%), C_{15}H_{25} (25\%)
Figure S2: 1H-NMR spectra of trisapm (a) and C-trisapm (inset shows the 13C-spectrum of C-trisapm) in CDCl$_3$; (b) FTIR spectrum of C-trisapm
Figure S3: Digital images of suspension of iron nanoparticles (a, c) and their blends in cardanol benzoxazine (b, d) in THF and chloroform (2.5 mg/mL loading of NPs) at room temperature.
Figure S4: TGA (a) and DTG (b) traces of TA and ATA at a heating rate of 10 °C/ min. under nitrogen atmosphere.

Figure S5: Histograms for grain size distribution in polymer-nanoparticles composites evaluated from the AFM images of 2μm × 2μm scan area.
Figure S6: Normalized transmission IR absorption spectra of C-trisapm blends after curing at 150 °C for 5h.
Figure S7: Relative change in intensity of normalized FTIR spectra in the monomer and its blend with iron NPs (150 °C for 2 h) at (a) 1255 cm\(^{-1}\), (b) 1040 cm\(^{-1}\), and (c) 1109 cm\(^{-1}\) due to C-O-C\(_{\text{asym}}\), C-O-C\(_{\text{sym}}\) and C-N-C stretching frequencies respectively.
Figure S8: Relative change in intensity of normalized FTIR spectra in the monomer and its blend with iron NPs (150 °C for 2 h) at (a) 1615 cm$^{-1}$, and (b) 1360 cm$^{-1}$. There is no peak at 1360 cm$^{-1}$ in case of C-trisapm, we have taken the absorbance value at 1360 cm$^{-1}$ in peak at 1370 cm$^{-1}$ for comparison purposes.
Figure S9: FTIR spectra of C-trisapm showing development of 1360 cm\(^{-1}\) stretch after curing at 150 °C for 2 h (a), 4h (b) and 8 h (c).
Figure S10: Stacked time dependent normalized 1H-NMR spectra of a) C-trisapm, b) C-trisapm(Fe)$_0$, c) C-trisapm(Fe)$_{TA}$, d) C-trisapm(Fe)$_{ATA}$ obtained from the reaction mixture at different time intervals at 150 °C. 1H-NMR of C-trisapm at a higher temperature 210 °C for 3 h is shown to notice the changes in relative manner. Inset in figures showed a zoom in region from 3.5-4.4 ppm.
Figure S11: Iron ion concentration in NPs: (a) complexation of Fe$^{2+}$ ion with o-phenanthroline, (b) concentration of iron ions available with time, and (c) standard curve of FeCl$_3$ with o-phenanthroline.
Figure S12: Normalized UV-vis. spectra of blends C-trisapm obtained after heating at 150 °C for 5 h, recorded in DMSO as solvent.
Figure S13: Stacked normalized 1H-NMR spectra of C-trisapm monomer and its polymerization reaction mediated by the presence of (Fe)$_0$ NPs using hydrogen peroxide vs. air.
Table S1: Molecular weight of soluble fraction in blends present after curing at 150 °C for 2h.

<table>
<thead>
<tr>
<th>C-trisapm(Fe)$_0$</th>
<th>C-trisapm(Fe)$_{TA}$</th>
<th>C-trisapm(Fe)$_{ATA}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_w</td>
<td>PDI</td>
<td>M_w</td>
</tr>
<tr>
<td>2174</td>
<td>2.7</td>
<td>2747</td>
</tr>
</tbody>
</table>

Table S2: Magnetic properties of thermally cured C-trisapm blends.

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_S (emu/g)</th>
<th>M_R (emu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fe)$_0$</td>
<td>59.05</td>
<td>10</td>
</tr>
<tr>
<td>(Fe)$_{TA}$</td>
<td>34.62</td>
<td>9.4</td>
</tr>
<tr>
<td>(Fe)$_{ATA}$</td>
<td>16.06</td>
<td>6.3</td>
</tr>
<tr>
<td>C-trisapm(Fe)$_0$</td>
<td>1.66</td>
<td>0.03</td>
</tr>
<tr>
<td>C-trisapm(Fe)$_{TA}$</td>
<td>1.81</td>
<td>0.56</td>
</tr>
<tr>
<td>C-trisapm(Fe)$_{ATA}$</td>
<td>1.23</td>
<td>0.15</td>
</tr>
</tbody>
</table>