Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metalorganic framework catalysts

Xiao-Hui Li^a, Yi-Wei Liu^a, Shu-Mei Liu^a, Shuang Wang^a, Li Xu^a, Zhong Zhang^a,

Fang Luo^a, Ying Lu^a, Shu-Xia Liu^a*

^a Key Laboratory of Polyoxometalate Science of the Ministry of Education,

College of Chemistry, Northeast Normal University,

Changchun, Jilin 130024, China

*e-mail: liusx@nenu.edu.cn

Fig. S1 (a) SEM image and (b) particle analysis of sample synthesized in mix solvent of ethanol and water.

Fig. S2 The comparison of samples prepared by freeze-drying and volatilization. The scale bars are all 1 μ m.

Fig. S3 (a) x-y phase diagram and (b) T-x-y phase diagram of ethanol and water.

Table S1. Porosity properties of NENU-9HP-1/V.

sample	^a S _{BET}	^b S _{micro}	^c S _{meso}	d V _t	^e V _{micro}	$f \mathbf{V}_{\text{meso}}$	^g D _{meso}
	(m ² g ⁻¹)	(m ² g ⁻¹)	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)	(cm^3g^{-1})	(nm)
NENU-9HP-1/30	369.2	311.2	40.0	0.185	0.144	0.038	12.6
NENU-9HP-1/60	503.5	417.1	57.4	0.330	0.193	0.131	17.9
NENU-9HP-1/120	624.0	553.4	50.2	0.476	0.254	0.239	30.1
NENU-9HP-1/240	710.8	594.8	92.8	0.642	0.274	0.416	22.9
NENU-9HP-1/120- Volatilization	166.6	118.1	44.5	0.145	0.054	0.096	11.1

 a S_{BET} is the BET-specific surface area. b S_{micro} is the t-plot-specific micropore surface area. c S_{meso} is the specific mesopore surface area BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter. d V_t is the total specific pore volume. e V_{micro} is the t-Plot micropore volume. f V_{meso} is the specific mesopore volume calculated from BJH adsorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter. g D_{meso} is the mesopore diameter calculated from adsorption isotherm using the BJH method.

Fig. S4 PXRD patterns of simulated NENU-9 and NENU-9HP-1/V.

Fig. S5 FTIR spectra of NENU-9HP-1/V.

Fig. S6 PXRD patterns of hierarchically porous and simulated ZIF-8.

Fig. S7 SEM image of hierarchically porous ZIF-8.

Fig. S8 N₂ sorption isotherm of hierarchically porous ZIF-8.

Fig. S9 Mesopore size distribution of hierarchically porous ZIF-8.

Fig. S10 PXRD patterns of hierarchically porous and simulated MIL-53(Al).

Fig. S11 SEM image of hierarchically porous MIL-53(Al).

Fig. S12 N_2 sorption isotherm of hierarchically porous MIL-53(Al).

Fig. S13 Mesopore size distribution of hierarchically porous MIL-53(Al).

Fig. S14 SEM image of NENU-9N.

Fig. S15 SEM image of NENU-9HT.

Fig. S16 (a) TOF values evaluated on the basis of the moles of the whole catalyst and reactive moles of substrates in 20 min, (b) conversions after 24 h of different primary fatty alcohols and (c) selectivity towards corresponding aldehydes catalyzed by NENU-9HP-1/120 and NENU-9HT.

Fig. S17 UV-Vis spectra of $H_5PV_2Mo_{10}O_{40}$, solution before reaction and filtrate after 2 h of reaction.

Fig. S18 FTIR spectra of NENU-9HP-1/120 before and after recycling for 5 times.

Fig. S19 SEM image of NENU-9HP-1/120 after recycling for 5 times.

Fig. S20 N_2 sorption isotherm of NENU-9HP-1/120 after recycling for 5 times.

Fig. S21 Mesopore size distribution of NENU-9HP-1/120 after recycling for 5 times.

Fig. S22 SEM images of NENU-9HP-1/120 sonicated in ethanol.

Fig. S23 Mesopore size distribution of NENU-9HP-1/120 sonicated in ethanol.