Supplementary Information

Structural transition in orthorhombic $\text{Li}_{5-x}\text{H}_x\text{La}_3\text{Nb}_2\text{O}_{12}$ garnets induced by a concerted lithium and proton diffusion mechanism

María Luisa Sanjuán, Alodia Orera, Isabel Sobrados, Antonio F. Fuentes, and Jesús Sanz

1Instituto de Ciencia de Materiales de Aragón (CSIC - Universidad de Zaragoza), Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

2Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain

3Cinvestav Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila, México
Fig. S1: Profile fit of the PXRD pattern of as-prepared Li$_5$La$_3$Nb$_2$O$_{12}$ with S.G. Ia-3d (230), $a=12.7967(3)$ Å.

Fig. S2: XRD pattern of as-aged LLNO. The main peaks of possible Li-containing second phases are indicated with $^\wedge$ (LiOH.H$_2$O), $+$ (LiOH) and * (Li$_2$CO$_3$).
Fig. S3. Raman spectra of aged LLNO after successive preparation steps: (a) as aged; (b) after washing and (c) after 1h homogenization at 200 °C. The non-washed sample presents strong LiOH.H$_2$O and LiOH bands (3575 and 3675 cm$^{-1}$, resp., marked with *), as well as a weak peak from Li$_2$CO$_3$ at 1093 cm$^{-1}$ (marked with a bar). Washing suppresses these secondary phases without affecting the bands from the garnet phase (see section 3.4.1). The short annealing at 200 °C sharpens the bands and increases spectral resolution.

Fig. S4: TG curve of aged Li$_5$La$_3$Nb$_2$O$_{12}$ after washing in distilled water to remove second-phases.
Fig. S5: XRD pattern and phase assignment of the TG residue of H-LLNO after 800 °C showing LiLa$_2$NbO$_6$ and LaNbO$_4$ as the main decomposition phases.

Fig. S6: DSC curve of H-LLNO between RT and 200 °C, displaying an endothermic event at 165 °C on heating and an exothermic one at 151 °C on cooling.
Fig. S7. Profile fit of the RT XRD pattern (t=3s, above) in the $P2_12_12_1$ (#19) SG and selected regions measured with t=6s showing low intensity reflections (below).
Fig. S8. Profile fit of the XRD pattern at 200 °C in the $I-43d$ (#220) SG. χ^2: 3.60.

Fig. S9: Tree depicting the relation between the SGs of the high and low temperature phases of H-LLNO ($I-43d$ and $P2_12_12_1$, respectively). Adapted from the Bilbao Crystallographic Server (ref. 23 in the main text).
Table S1

Relevant bond-distances in the low-temperature phase of H-LLNO derived from the fit of the RT PND in the P_{212121} SG.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La1 - O1</td>
<td>2.47</td>
</tr>
<tr>
<td>La1 - O3</td>
<td>2.58</td>
</tr>
<tr>
<td>La1 - O10</td>
<td>2.54</td>
</tr>
<tr>
<td>La1 - O11</td>
<td>2.51</td>
</tr>
<tr>
<td>La1 - O13</td>
<td>2.55</td>
</tr>
<tr>
<td>La1 - O15</td>
<td>2.51</td>
</tr>
<tr>
<td>La1 - O22</td>
<td>2.66</td>
</tr>
<tr>
<td>La1 - O23</td>
<td>2.58</td>
</tr>
<tr>
<td>La2 - O1</td>
<td>2.44</td>
</tr>
<tr>
<td>La2 - O2</td>
<td>2.50</td>
</tr>
<tr>
<td>La2 - O10</td>
<td>2.50</td>
</tr>
<tr>
<td>La2 - O12</td>
<td>2.63</td>
</tr>
<tr>
<td>La2 - O13</td>
<td>2.71</td>
</tr>
<tr>
<td>La2 - O14</td>
<td>2.58</td>
</tr>
<tr>
<td>La2 - O22</td>
<td>2.43</td>
</tr>
<tr>
<td>La2 - O24</td>
<td>2.54</td>
</tr>
<tr>
<td>La3 - O2</td>
<td>2.52</td>
</tr>
<tr>
<td>La3 - O3</td>
<td>2.40</td>
</tr>
<tr>
<td>La3 - O11</td>
<td>2.59</td>
</tr>
<tr>
<td>La3 - O12</td>
<td>2.51</td>
</tr>
<tr>
<td>La3 - O14</td>
<td>2.57</td>
</tr>
<tr>
<td>La3 - O15</td>
<td>2.47</td>
</tr>
<tr>
<td>La3 - O23</td>
<td>2.54</td>
</tr>
<tr>
<td>La3 - O24</td>
<td>2.42</td>
</tr>
<tr>
<td>La4 - O4</td>
<td>2.50</td>
</tr>
<tr>
<td>La4 - O6</td>
<td>2.68</td>
</tr>
<tr>
<td>La4 - O7</td>
<td>2.63</td>
</tr>
<tr>
<td>La4 - O8</td>
<td>2.54</td>
</tr>
<tr>
<td>La4 - O16</td>
<td>2.45</td>
</tr>
<tr>
<td>La4 - O18</td>
<td>2.40</td>
</tr>
<tr>
<td>La4 - O19</td>
<td>2.46</td>
</tr>
<tr>
<td>La4 - O20</td>
<td>2.45</td>
</tr>
<tr>
<td>La5 - O7</td>
<td>2.55</td>
</tr>
<tr>
<td>La5 - O9</td>
<td>2.63</td>
</tr>
<tr>
<td>La5 - O16</td>
<td>2.44</td>
</tr>
<tr>
<td>La5 - O17</td>
<td>2.45</td>
</tr>
<tr>
<td>La5 - O19</td>
<td>2.48</td>
</tr>
<tr>
<td>La5 - O21</td>
<td>2.44</td>
</tr>
<tr>
<td>La6 - O5</td>
<td>2.56</td>
</tr>
<tr>
<td>La6 - O6</td>
<td>2.48</td>
</tr>
<tr>
<td>La6 - O8</td>
<td>2.47</td>
</tr>
<tr>
<td>La6 - O9</td>
<td>2.41</td>
</tr>
<tr>
<td>La6 - O17</td>
<td>2.66</td>
</tr>
<tr>
<td>La6 - O18</td>
<td>2.54</td>
</tr>
<tr>
<td>La6 - O20</td>
<td>2.67</td>
</tr>
<tr>
<td>La6 - O21</td>
<td>2.51</td>
</tr>
<tr>
<td>Nb1 - O10</td>
<td>2.11</td>
</tr>
<tr>
<td>Nb1 - O11</td>
<td>2.31</td>
</tr>
<tr>
<td>Nb1 - O12</td>
<td>1.98</td>
</tr>
<tr>
<td>Nb1 - O16</td>
<td>1.81</td>
</tr>
<tr>
<td>Nb1 - O17</td>
<td>1.84</td>
</tr>
<tr>
<td>Nb1 - O18</td>
<td>1.89</td>
</tr>
<tr>
<td>Nb2 - O1</td>
<td>1.84</td>
</tr>
<tr>
<td>Nb2 - O2</td>
<td>1.84</td>
</tr>
<tr>
<td>Nb2 - O3</td>
<td>2.02</td>
</tr>
<tr>
<td>Nb2 - O19</td>
<td>2.23</td>
</tr>
<tr>
<td>Nb2 - O20</td>
<td>2.17</td>
</tr>
<tr>
<td>Nb3 - O4</td>
<td>1.90</td>
</tr>
<tr>
<td>Nb3 - O5</td>
<td>1.92</td>
</tr>
<tr>
<td>Nb3 - O6</td>
<td>2.05</td>
</tr>
<tr>
<td>Nb3 - O22</td>
<td>2.13</td>
</tr>
<tr>
<td>Nb3 - O23</td>
<td>2.15</td>
</tr>
<tr>
<td>Nb3 - O24</td>
<td>1.87</td>
</tr>
<tr>
<td>Nb4 - O7</td>
<td>2.16</td>
</tr>
<tr>
<td>Nb4 - O8</td>
<td>2.13</td>
</tr>
</tbody>
</table>
Nb4 – O9 : 1.97
Nb4 – O13 : 1.91
Nb4 – O14 : 1.87
Nb4 – O15 : 1.97
Li1 – O1 : 1.824
Li1 – O5 : 1.93
Li1 – O13 : 1.90
Li1 – O17 : 2.10
Li2 – O2 : 1.87
Li2 – O4 : 2.19
Li2 – O14 : 2.02
Li2 – O16 : 1.95
Li3 – O3 : 1.94
Li3 – O6 : 1.87
Li3 – O15 : 2.06
Li3 – O18 : 2.06
Li4 – O7 : 2.00
Li4 – O11 : 1.80
Li4 – O19 : 1.96
Li4 – O23 : 1.83
Li5 – O8 : 1.98
Li5 – O10 : 1.80
Li5 – O20 : 2.14
Li5 – O22 : 1.89
Li6 – O9 : 2.01
Li6 – O12 : 1.96
Li6 – O21 : 2.00
Li6 – O24 : 2.19
H1 – O8 : 1.02
H2 – O23 : 0.98
H3 – O10 : 1.03
H4 – O20 : 1.17
H5 – O11 : 1.03
H6 – O22 : 1.10
H7 – O7 : 0.92
H8 – O19 : 0.90
H1 – H3 : 1.51
H1 – H4 : 2.77
H1 – H6 : 2.69
H3 – H4 : 2.30
H3 – H6 : 3.44
H2 – H5 : 2.41
H2 – H7 : 1.88
H2 – H8 : 1.89
H5 – H7 : 1.76
H5 – H8 : 2.04
Fig. S10. Unit cell resulting from fitting the RT PND pattern with the $P2_12_12_1$ SG. Atom coordinates and occupancies are given in Table 1 of the main text.

Table S2. Relevant distances in the high temperature phase of H-LLNO derived from the fit of the 200 °C PND in the $I-43d$ SG.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>La1 - O1</td>
<td>2.57 x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La1 - O2</td>
<td>2.56 x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb1 - O1</td>
<td>2.07 x3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb1 - O2</td>
<td>1.94 x3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li1(12b) - O1</td>
<td>1.93 x4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li2(12a) - O2</td>
<td>1.99 x4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li3 - O1</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li3 - O2</td>
<td>2.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li3 - O3</td>
<td>2.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li3 - O4</td>
<td>2.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1 - O1</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 - O1</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3 - O2</td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4 - O2</td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5 - O1</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6 - O2</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7 - O1</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8 - O2</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. S11. Unit cell of the high temperature phase (I-43d SG), showing Li1 and Li2 tetrahedra, Nb octahedra and H bonding to Li1 tetrahedra. Large spheres represent octahedral Li ions (Li3).
Fig. S12. Profile decomposition of the OH\(^-\) stretching region of the RT Raman spectrum.

Fig. S13. Profile decomposition of the \(^1\)H MAS-NMR spectrum (\(\nu_t = 10\) KHz).