Supporting information

Pt(IV) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment

Zhiyun Zhang, Yanjuan Wu, Gaizhen Kuang, Shi Liu, Dongfang Zhou, Xuesi Chen, Xiabin Jing and Yubin Huang

a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

c Department of Gastroenterology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, 710048, P. R. China

d Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
Scheme S1 Synthesis pathway for clickable monomer 1 diazide-terminate Pt(IV) (A) and (B) dialkyne-terminate PEG$_{2k}$ monomer 2.
Figure. S1 1H NMR characterization of diazide-terminate Pt(IV) (A) and dialkyne-terminate PEG$_{2k}$ (B) in CDCl$_3$ and DMSO-d_6.
Fig. S2 Diameter distribution of micelles released from M/DCA-fibers in PBS (pH = 7.4).
Fig. S3 L929 cell viability after incubation with PVA nanofibers for 72 h.
Fig. S4 Release profiles of Pt from M/DCA-fibers \textit{in vivo}.