Supporting Information

In vivo Toxicological Assessment of Electrochemically Engineered Anodic Alumina Nanotubes: A Study of Biodistribution, Subcutaneous Implantation and Intravenous Injection

Ye Wang¹,², Irene Zinonos², Aneta Zysk², Vasilios Panagopoulos², Gagandeep Kaur¹, Abel Santos¹,³,⁴*, Dusan Losic¹* and Andreas Evdokiou²*

¹School of Chemical Engineering, The University of Adelaide, Engineering North Building, 5005 Adelaide, Australia.
²Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville, 5011 Adelaide, Australia.
³The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, 5005 Adelaide, Australia.
⁴The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, 5005 Adelaide, Australia.

*E-mails: abel.santos@adelaide.edu.au; dusan.losic@adelaide.edu.au; andreas.evdokiou@adelaide.edu.au
Figure S1. Characterization of AANTs functionalized with (3 Aminopropyl)triethoxysilane (APTES) and Dylight 800 NHS. (a) Fourier transform infrared (FTIR) spectrum of AANTs@APTES. (b) UV-Vis-Near infrared spectrum of AANTs labeled with Dylight 800.
In vivo Toxicological Assessment of Electrochemically Engineered Anodic Alumina Nanotubes: A Study of Biodistribution, Subcutaneous Implantation and Intravenous Injection

Figure S2. Histology images of lung, heart and brain obtained after IV injecting AANTs of 28 days. Magnification: ×40.
In vivo Toxicological Assessment of Electrochemically Engineered Anodic Alumina Nanotubes: A Study of Biodistribution, Subcutaneous Implantation and Intravenous Injection

Figure S3. Histology images of liver, spleen and kidney obtained after IV injecting AANTs of 28 days. Magnification: ×40.