Supporting Information

A reusable and naked-eye molecular probe with aggregation-induced emission (AIE) characteristics for hydrazine detection

Xiamin Cheng, Ruoyu Zhang, Xiaolei Cai and Bin Liu*

a Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.

b Institute of Materials Research and Engineering (A*STAR), 3 Research Link, 117602, Singapore

*E-mail: cheliub@nus.edu.sg

‡ These authors contributed equally to this work

Fig. S1 ¹H NMR spectrum of compound 3.
Fig. S2 13C NMR spectrum of compound 3.

Fig. S3 1H NMR spectrum of compound 4.
Fig. S4 13C NMR spectrum of compound 4.

Fig. S5 1H NMR spectrum of compound 5.
Fig. S6 13C NMR spectrum of compound 5.

Fig. S7 1H NMR spectrum of compound 6.
Fig. S8 13C NMR spectrum of compound 6.

Fig. S9 1H NMR spectrum of compound 7.
Fig. S10 The photograph of TLC plates pre-stained with probe 6 (1) and incubated with various cations (Na⁺, K⁺, Mg²⁺ and Ca²⁺, 10 mM), anions (SO₃²⁻, S₂O₃²⁻, SO₄²⁻ and NO₃⁻, 10 mM), amino acids (glycine, aspartic acid, lysine and cysteine, 10 mM), GSH (10 mM), D-glucose (10 mM), BSA (1 mg/mL) and aqueous hydrazine solution (10 mM) (2) and incubated with aqueous hydrazine solution (10 mM) alone. Top: under white light illumination; bottom: under 365 nm UV light illumination.